SOLVABILITY OF THE NONLINEAR DIRICHLET PROBLEM WITH INTEGRO-DIFFERENTIAL OPERATORS

被引:3
|
作者
Bayraktar, Erhan [1 ]
Song, Qingshuo [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
boundary value problem; Skorokhod topology; integro-differential equation; viscosity solution; Levy process; stochastic exit control problem; STOCHASTIC PERRONS METHOD; VISCOSITY SOLUTIONS; LIFETIME RUIN; EQUATIONS; VERIFICATION; PROBABILITY;
D O I
10.1137/17M1130241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the solvability of a class of elliptic nonlinear Dirichlet problems with jumps. The contribution of the paper is the construction of the supersolution required in Perron's method. This is achieved by solving the exit time problem of an Ito jump diffusion. The proof of this relies on the proof of continuity of the entrance time and point with respect to the Skorokhod topology.
引用
收藏
页码:292 / 315
页数:24
相关论文
共 50 条
  • [1] The obstacle problem for nonlinear integro-differential operators
    Janne Korvenpää
    Tuomo Kuusi
    Giampiero Palatucci
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [2] The obstacle problem for nonlinear integro-differential operators
    Korvenpaa, Janne
    Kuusi, Tuomo
    Palatucci, Giampiero
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
  • [3] On the solvability of a nonlinear integro-differential equation arising in the income distribution problem
    Khachatryan, A. Kh.
    Khachatryan, Kh. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (10) : 1702 - 1711
  • [4] On the solvability of a nonlinear integro-differential equation arising in the income distribution problem
    A. Kh. Khachatryan
    Kh. A. Khachatryan
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 1702 - 1711
  • [5] On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation
    Assanova, A. T.
    Zhumatov, S. S.
    Mynbayeva, S. T.
    Karakenova, S. G.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 25 - 34
  • [6] A nonlinear parabolic integro-differential problem with an unknown Dirichlet boundary condition
    Grimmonprez, Marijke
    Slodicka, Marian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 421 - 432
  • [7] On Solvability of Integro-Differential Equations
    De Leon-Contreras, Marta
    Gyongy, Istvan
    Wu, Sizhou
    [J]. POTENTIAL ANALYSIS, 2021, 55 (03) : 443 - 475
  • [8] On Solvability of Integro-Differential Equations
    Marta De León-Contreras
    István Gyöngy
    Sizhou Wu
    [J]. Potential Analysis, 2021, 55 : 443 - 475
  • [9] Inverse spectral problem for integro-differential operators
    Kuryshova, Yu. V.
    [J]. MATHEMATICAL NOTES, 2007, 81 (5-6) : 767 - 777
  • [10] An inverse nodal problem for integro-differential operators
    Kuryshova, Yulia V.
    Shieh, Chung-Tsun
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (04): : 357 - 369