Time-dependent real-space renormalization-group approach: application to an adiabatic random quantum lsing model

被引:0
|
作者
Mason, Peter [1 ]
Zagoskin, Alexandre M. [1 ]
Betouras, Joseph J. [1 ]
机构
[1] Loughborough Univ, Dept Phys, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
disordered systems; quantum phase transitions; quantum criticality; one-dimensional spin chains;
D O I
10.1088/1751-8121/aaf489
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a time-dependent real-space renormalization-group approach which can be applied to Hamiltonians with time-dependent random terms. To illustrate the renormalization-group analysis, we focus on the quantum Ising Hamiltonian with random site- and time-dependent (adiabatic) transverse-field and nearest-neighbour exchange couplings. We demonstrate how the method works in detail, by calculating the off-critical flows and recovering the ground state properties of the Hamiltonian such as magnetization and correlation functions. The adiabatic time allows us to traverse the parameter space, remaining near-to the ground state which is broadened if the rate of change of the Hamiltonian is finite. The quantum critical point, or points, depend on time through the time-dependence of the parameters of the Hamiltonian. We, furthermore, make connections with Kibble-Zurek dynamics and provide a scaling argument for the density of defects as we adiabatically pass through the critical point of the system.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] RANDOM GEOMETRIES AND REAL-SPACE RENORMALIZATION-GROUP
    JOHNSTON, DA
    KOWNACKI, JP
    KRZYWICKI, A
    NUCLEAR PHYSICS B, 1995, : 728 - 730
  • [2] RANDOM QUANTUM SPIN CHAINS - A REAL-SPACE RENORMALIZATION-GROUP STUDY
    WESTERBERG, E
    FURUSAKI, A
    SIGRIST, M
    LEE, PA
    PHYSICAL REVIEW LETTERS, 1995, 75 (23) : 4302 - 4305
  • [3] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO THE RANDOM-FIELD ISING-MODEL
    DAYAN, I
    SCHWARTZ, M
    YOUNG, AP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (13): : 3093 - 3103
  • [4] Real-space renormalization-group approach to the integer quantum Hall effect
    Cain, P
    Römer, RA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (13): : 2085 - 2119
  • [5] REAL-SPACE RENORMALIZATION-GROUP ANALYSIS OF QUANTUM PERCOLATION
    ODAGAKI, T
    CHANG, KC
    PHYSICAL REVIEW B, 1984, 30 (03): : 1612 - 1614
  • [6] REAL-SPACE QUANTUM RENORMALIZATION-GROUP AND ANDERSON LOCALIZATION
    NOACK, RM
    WHITE, SR
    PHYSICAL REVIEW B, 1993, 47 (15): : 9243 - 9247
  • [7] REAL-SPACE RENORMALIZATION-GROUP - APPLICATION TO DIRECTED PERCOLATION
    PHANI, MK
    DHAR, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (07): : 1391 - 1398
  • [8] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO THE MULTIGRID METHOD
    VYAS, V
    PHYSICAL REVIEW D, 1991, 43 (10): : 3465 - 3474
  • [9] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO A MODEL OF MELTING IN 2 DIMENSIONS
    JOSE, JV
    PHYSICAL REVIEW B, 1978, 18 (11): : 6395 - 6397
  • [10] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO THE KINETIC ISING-MODEL
    TAKANO, H
    SUZUKI, M
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (05): : 1332 - 1352