On triangle cover contact graphs

被引:0
|
作者
Sultana, Shaheena [1 ]
Hossain, Md. Iqbal [2 ]
Rahman, Md. Saidur [1 ]
Moon, Nazmun Nessa [1 ]
Hashem, Tahsina [1 ]
机构
[1] BUET, Dept Comp Sci & Engn, Graph Drawing & Informat Visualizat Lab, Dhaka 1000, Bangladesh
[2] Univ Arizona, Tucson, AZ 85721 USA
关键词
Cover contact graphs; Triangle cover contact graphs; Outerplanar graphs;
D O I
10.1016/j.comgeo.2017.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S = {P-1, p(2), ..., p(n)} be a set of pairwise disjoint geometric objects of some type in a 2D plane and let C = {c(1), c(2), ..., c(n)} be a set of dosed objects of some type in the same plane with the property that each element in C covers exactly one element in S and any two elements in C are interior-disjoint. We call an element in S a seed and an element in C a cover. A cover contact graph (CCG) has a vertex for each element of C and an edge between two vertices whenever the corresponding cover elements touch. It is known how to construct, for any given point seed set, a disk or triangle cover whose contact graph is 1- or 2-connected but the problem of deciding whether a k-connected CCG can be constructed or not for k > 2 is still unsolved. A triangle cover contact graph (TCCG) is a cover contact graph whose cover elements are triangles. In this paper, we give algorithms to construct a 3-connected TCCG and a 4-connected TCCG for a given set of point seeds. We also show that any connected outerplanar graph has a realization as a TCCG on a given set of collinear point seeds. Note that, under this restriction, only trees and cycles are known to be realizable as CCG. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [1] Realizability of graphs as triangle cover contact graphs
    Sultana, Shaheena
    Rahman, Md. Saidur
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 720 : 24 - 35
  • [2] COVER CONTACT GRAPHS
    Atienza, Nieves
    de Castro, Natalia
    Cortes, Carmen
    Angeles Garrido, M.
    Grima, Clara I.
    Hernandez, Gregorio
    Marquez, Alberto
    Moreno-Gonzalez, Auxiliadora
    Nollenburg, Martin
    Ramon Portillo, Jose
    Reyes, Pedro
    Valenzuela, Jesus
    Trinidad Villar, Maria
    Wolff, Alexander
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2012, 3 (01) : 102 - 131
  • [3] Cover contact graphs
    Atienza, Nieves
    de Castro, Natalia
    Cortes, Carmen
    Garrido, M. Angeles
    Grima, Clara I.
    Hernandez, Gregorio
    Marquez, Alberto
    Moreno, Auxiliadora
    Noellenburg, Martin
    Portillo, Jose Ramon
    Reyes, Pedro
    Valenzuela, Jesus
    Villar, Maria Trinidad
    Wolff, Alexander
    [J]. GRAPH DRAWING, 2008, 4875 : 171 - +
  • [4] Dense Graphs With a Large Triangle Cover Have a Large Triangle Packing
    Yuster, Raphael
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (06): : 952 - 962
  • [5] Triangle contact systems, orthogonal plane partitions and their hit graphs
    Nakamoto, A
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 264 - 273
  • [6] TRIANGLE GRAPHS
    BENANTAR, M
    DOGRUSOZ, U
    FLAHERTY, JE
    KRISHNAMOORTHY, MS
    [J]. APPLIED NUMERICAL MATHEMATICS, 1995, 17 (02) : 85 - 96
  • [7] Recognizing Simple-Triangle Graphs by Restricted 2-Chain Subgraph Cover
    Takaoka, Asahi
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 177 - 189
  • [8] Recognizing simple-triangle graphs by restricted 2-chain subgraph cover
    Takaoka, Asahi
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 279 : 154 - 167
  • [9] Triangle graphs and simple trapezoid graphs
    Lin, YL
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2002, 18 (03) : 467 - 473
  • [10] On Touching Triangle Graphs
    Gansner, Emden R.
    Hu, Yifan
    Kobourov, Stephen G.
    [J]. GRAPH DRAWING, 2011, 6502 : 250 - +