The Characterizations of WG Matrix and Its Generalized Cayley-Hamilton Theorem

被引:9
|
作者
Liu, Na [1 ]
Wang, Hongxing [1 ]
机构
[1] Guangxi Univ Nationalities, Key Lab Complex Syst & Intelligent Comp, Guangxi Higher Sch, Sch Math & Phys, Nanning 530006, Peoples R China
关键词
WEAK GROUP INVERSE; SYSTEMS;
D O I
10.1155/2021/4952943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the core-EP decomposition, we use the WG inverse, Drazin inverse, and other inverses to give some new characterizations of the WG matrix. Furthermore, we generalize the Cayley-Hamilton theorem for special matrices including the WG matrix. Finally, we give examples to verify these results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A generalized Cayley-Hamilton theorem
    Feng, Lianggui
    Tan, Haijun
    Zhao, Kaiming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2440 - 2445
  • [2] AN APPLICATION OF CAYLEY-HAMILTON THEOREM TO GENERALIZED MATRIX INVERSION
    DECELL, HP
    [J]. SIAM REVIEW, 1965, 7 (04) : 526 - &
  • [3] A generalized Cayley-Hamilton theorem for polynomials with matrix coefficients
    Hwang, Suk-Geun
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) : 475 - 479
  • [4] Linearized systems and a generalized Cayley-Hamilton theorem
    Lang, Jeffrey
    Newland, Daniel
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
  • [5] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [6] GENERALIZED CAYLEY-HAMILTON THEOREM IN N DIMENSIONS
    LEW, JS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1966, 17 (05): : 650 - &
  • [7] THE GENERALIZED CAYLEY-HAMILTON THEOREM FOR STANDARD PENCILS
    CHANG, FR
    CHEN, HC
    [J]. SYSTEMS & CONTROL LETTERS, 1992, 18 (03) : 179 - 182
  • [8] Rank in Banach algebras: A generalized Cayley-Hamilton theorem
    Braatvedt, G.
    Brits, R.
    Schulz, F.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 507 : 389 - 398
  • [9] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [10] APPLICATION OF BLOCK CAYLEY-HAMILTON THEOREM TO GENERALIZED INVERSION
    Randelovic, Aleksandar S.
    Stanimirovic, Predrag S.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (03): : 209 - 232