3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants

被引:137
|
作者
Vijayavenkataraman, Sanjairaj [1 ,2 ]
Kuan, Lai Yee [3 ]
Lu, Wen Feng [3 ]
机构
[1] New York Univ Abu Dhabi, Div Engn, Abu Dhabi, U Arab Emirates
[2] NYU, Dept Mech & Aerosp Engn, Tandon Sch Engn, New York, NY 10003 USA
[3] Natl Univ Singapore NUS, Dept Mech Engn, Singapore, Singapore
关键词
Bone implants; Triply periodic minimal surfaces; Ceramics; Stress-shielding; Vat polymerization; 3D printing; TOTAL HIP; SCAFFOLDS; FABRICATION; REPLACEMENT; DENSITY;
D O I
10.1016/j.matdes.2020.108602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stress shielding is one of the main problems that lead to bone resorption and revision surgery after implantation. Most of the commercially available metallic non-porous bone implants have a much greater stiffness than the native human bones and are prone to cause stress-shielding. With an open cell structure and intricate architecture, hyperbolic minimal surfaces offer several advantages such as less stress concentration, high permeability and high surface area to volume ratio, thus providing an ideal environment for cell adhesion, migration, and proliferation. This paper explores the use of porous bone implant design based on Triply Periodic Minimal Surfaces (TPMS) which is additively manufactured with ceramic material (Alumina) using Lithography-based Ceramics Manufacturing (LCM) technology. A total of 12 different primitive surface structure unit cells with pore size in the range of 500-1000 mu m and porosity above 50% were considered. This is one of the earliest studies reporting the 3D printing of TPMS-based structures using ceramic material. Our results suggest that the choice of material and a porous TPMS-based design led to fabrication of structures with a much lesser compressive modulus comparable with the native bone and hence could potentially be adopted for bone implant design to mitigate the stress-shielding effect. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Design exploration of 3D-printed triply periodic minimal surface scaffolds for bone implants
    Poltue, Teerapong
    Karuna, Chatchai
    Khrueaduangkham, Suppakrit
    Seehanam, Saran
    Promoppatum, Patcharapit
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 211
  • [2] 3D-printed triply periodic minimal surface (TPMS) structures as catalyst carriers
    Iwaniszyn, M.
    Sindera, K.
    Maszybrocka, J.
    Jodlowski, P. J.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 209 : 37 - 51
  • [3] Design, fabrication, and evaluation of functionally graded triply periodic minimal surface structures fabricated by 3D printing
    Ibrahim M. Hassan
    Tawakol A. Enab
    Noha Fouda
    Ibrahim Eldesouky
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [4] Design, fabrication, and evaluation of functionally graded triply periodic minimal surface structures fabricated by 3D printing
    Hassan, Ibrahim M. M.
    Enab, Tawakol A. A.
    Fouda, Noha
    Eldesouky, Ibrahim
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)
  • [5] 3D-printed and foamed triply periodic minimal surface lattice structures for energy absorption applications
    Weber, Dylan
    Sundarram, Sriharsha Srinivas
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (04): : 1133 - 1145
  • [6] 3D-Printed PEEK/Silicon Nitride Scaffolds with a Triply Periodic Minimal Surface Structure for Spinal Fusion Implants
    Du, Xiaoyu
    Ronayne, Sean
    Lee, Seunghun S.
    Hendry, Jackson
    Hoxworth, Douglas
    Bock, Ryan
    Ferguson, Stephen J.
    ACS APPLIED BIO MATERIALS, 2023, 6 (08) : 3319 - 3329
  • [7] 3D-printed laponite bioceramic triply periodic minimal surface scaffolds with excellent bioactivity for bone regeneration
    Guo, Shuanjiang
    Zhao, Hongyu
    Chen, Qinghua
    Zou, Bin
    Xing, Hongyu
    Lai, Qingguo
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 980 - 990
  • [8] Isogeometric 3D optimal designs of functionally graded triply periodic minimal surface
    Tang, Huy
    Nguyen, Nam, V
    Nguyen-Xuan, H.
    Lee, Jaehong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 277
  • [9] Dynamic compressive behavior of functionally graded triply periodic minimal surface cellular structures
    Liang, Yingjing
    He, Huiyi
    Yin, Jun
    Huang, Jianzhang
    Wu, Zhigang
    Yao, Xiaohu
    Liu, Yijie
    ENGINEERING STRUCTURES, 2024, 312
  • [10] 3D-Printed Ti6Al4V Scaffolds with Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering
    Liao, Bo
    Xia, Ru Feng
    Li, Wei
    Lu, Dong
    Jin, Zhong Min
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (07) : 4993 - 5004