Polyhedral computational geometry for averaging metric phylogenetic trees

被引:37
|
作者
Miller, Ezra [1 ]
Owen, Megan [2 ]
Provan, J. Scott [3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Tree space; Frechet mean; Polyhedral subdivision; Descent method; COMPUTING GEODESIC DISTANCES; LIMIT-THEOREMS; SPECIES TREES; SPACE; CONSENSUS;
D O I
10.1016/j.aam.2015.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the computational geometry relevant to calculations of the Frechet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are determined by the location of the varying endpoint in a certain polyhedral subdivision of tree space. The variance function associated to a finite subset of tree space has a fixed C-infinity algebraic formula within each cell of the corresponding subdivision, and is continuously differentiable in the interior of each orthant of tree space. We use this subdivision to establish two iterative methods for producing sequences that converge to the Frechet mean: one based on Sturm's Law of Large Numbers, and another based on descent algorithms for finding optima of smooth functions on convex polyhedra. We present properties and biological applications of Frechet means and extend our main results to more general globally nonpositively curved spaces composed of Euclidean orthants. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 91
页数:41
相关论文
共 50 条
  • [1] Polyhedral Geometry of Phylogenetic Rogue Taxa
    Cueto, Maria Angelica
    Matsen, Frederick A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (06) : 1202 - 1226
  • [2] Polyhedral Geometry of Phylogenetic Rogue Taxa
    María Angélica Cueto
    Frederick A. Matsen
    Bulletin of Mathematical Biology, 2011, 73 : 1202 - 1226
  • [3] An algebraic metric for phylogenetic trees
    Alberich, Ricardo
    Cardona, Gabriel
    Rossello, Francesc
    Valiente, Gabriel
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1320 - 1324
  • [4] Geometry of the space of phylogenetic trees
    Billera, LJ
    Holmes, SP
    Vogtmann, K
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (04) : 733 - 767
  • [5] Information geometry for phylogenetic trees
    M. K. Garba
    T. M. W. Nye
    J. Lueg
    S. F. Huckemann
    Journal of Mathematical Biology, 2021, 82
  • [6] Information geometry for phylogenetic trees
    Garba, M. K.
    Nye, T. M. W.
    Lueg, J.
    Huckemann, S. F.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (03)
  • [7] A Metric for Phylogenetic Trees Based on Matching
    Lin, Yu
    Rajan, Vaibhav
    Moret, Bernard M. E.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 1014 - 1022
  • [8] A Metric for Phylogenetic Trees Based on Matching
    Lin, Yu
    Rajan, Vaibhav
    Moret, Bernard M. E.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 197 - 208
  • [9] A Metric on the Space of Rooted Phylogenetic Trees
    Wang, Juan
    Guo, Maozu
    CURRENT BIOINFORMATICS, 2018, 13 (05) : 487 - 491
  • [10] A parsimony-based metric for phylogenetic trees
    Moulton, Vincent
    Wu, Taoyang
    ADVANCES IN APPLIED MATHEMATICS, 2015, 66 : 22 - 45