The asymptotic distribution of exponential sums, II

被引:0
|
作者
Patterson, SJ [1 ]
机构
[1] Math Inst, D-37073 Gottingen, Germany
关键词
cubic exponential sums; Kummer conjecture; Gauss sums;
D O I
10.1080/10586458.2005.10128901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(x) be a polynomial with integral coefficients and let, for c > 0, S(f(x),c) = Sigma i ((mod) (C)) exp(2 pi i f(i)/c). If f is a cu-c polynomial then it is expected that Sigma c <= xS(f(x), c) similar to k (f)(f)X-4/3. In this paper, we consider the special case f(x) =Ax(3) + Bx and propose a precise formula for k(f). This conjecture represents a refined version of the classical Kummer conjecture.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条