Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

被引:24
|
作者
Ulusoy, Ali Osman [1 ,2 ]
Black, Michael J. [1 ]
Geiger, Andreas [2 ,3 ]
机构
[1] MPI Intelligent Syst Tubingen, Perceiving Syst Dept, Tubingen, Germany
[2] MPI Intelligent Syst Tubingen, Autonomous Vis Grp, Tubingen, Germany
[3] Swiss Fed Inst Technol, Comp Vis & Geometry Grp, Zurich, Switzerland
关键词
D O I
10.1109/CVPR.2017.482
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.
引用
收藏
页码:4531 / 4540
页数:10
相关论文
共 50 条
  • [1] MULTI-VIEW STEREO WITH SEMANTIC PRIORS
    Stathopoulou, E. -K.
    Remondino, F.
    [J]. 27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 1135 - 1140
  • [2] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [3] Multi-View Stereo with Single-View Semantic Mesh Refinement
    Romanoni, Andrea
    Ciccone, Marco
    Visin, Francesco
    Matteucci, Matteo
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 706 - 715
  • [4] Refractive Multi-view Stereo
    Cassidy, Matthew
    Melou, Jean
    Queau, Yvain
    Lauze, Francois
    Durou, Jean-Denis
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 384 - 393
  • [5] Polarimetric Multi-View Stereo
    Cui, Zhaopeng
    Gu, Jinwei
    Shi, Boxin
    Tan, Ping
    Kautz, Jan
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 369 - 378
  • [6] Multi-View Stereo: A Tutorial
    Furukawa, Yasutaka
    Hernandez, Carlos
    [J]. FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2013, 9 (1-2): : 1 - 148
  • [7] BSI-MVS: multi-view stereo network with bidirectional semantic information
    Jia, Ruiming
    Yu, Jun
    Hu, Zhenghui
    Yuan, Fei
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Multi-view multi-exposure stereo
    Troccoli, Alejandro
    Kang, Sing Bing
    Seitz, Steve
    [J]. THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2007, : 861 - 868
  • [9] Multi-view stereo beyond Lambert
    Jin, HL
    Soatto, S
    Yezzi, AJ
    [J]. 2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 171 - 178
  • [10] Probabilistic visibility for multi-view stereo
    Hernandez, Carlos
    Vogiatzis, George
    Cipolla, Roberto
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1704 - 1711