Superconvergence by L2-projection for a stabilized finite volume method for the stationary Navier-Stokes equations

被引:11
|
作者
Huang, Pengzhan [1 ]
Zhang, Tong [2 ,3 ]
Ma, Xiaoling [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
关键词
Superconvergence; L-2-projection; Stabilized finite volume method; Navier-Stokes equations; ELEMENT-METHOD; GLOBAL SUPERCONVERGENCE; REGULARITY;
D O I
10.1016/j.camwa.2011.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A superconvergence result is established for the stationary Navier-Stokes equations by a stabilized finite volume method and L-2-projection on a coarse mesh. Like other results in the family of L-2-projection methods, the superconvergence presented in this paper is based on some regularity assumption for the Navier-Stokes problem and is applicable to the stabilized finite volume method with quasi-uniform partitions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4249 / 4257
页数:9
相关论文
共 50 条
  • [1] A stabilized finite volume method for the stationary Navier-Stokes equations
    Sheng, Ying
    Zhang, Tie
    Jiang, Zhong-Zhong
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 363 - 372
  • [2] Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations
    Li, Jian
    Shen, Lihua
    Chen, Zhangxin
    [J]. BIT NUMERICAL MATHEMATICS, 2010, 50 (04) : 823 - 842
  • [3] Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations
    Jian Li
    Lihua Shen
    Zhangxin Chen
    [J]. BIT Numerical Mathematics, 2010, 50 : 823 - 842
  • [4] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [5] SUPERCONVERGENCE OF STABILIZED LOW ORDER FINITE VOLUME APPROXIMATION FOR THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS
    Li, Jian
    Wu, Jianhua
    Chen, Zhangxin
    Wang, Aiwen
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (02) : 419 - 431
  • [6] Superconvergence of discontinuous Galerkin finite element method for the stationary Navier-Stokes equations
    Li, Jian
    He, Yinnian
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 421 - 436
  • [7] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [8] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [9] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [10] Stabilized finite-element method for the stationary Navier-Stokes equations
    Yinnian He
    Aiwen Wang
    Liquan Mei
    [J]. Journal of Engineering Mathematics, 2005, 51 : 367 - 380