An improved upper bound for the dynamic list coloring of 1-planar graphs

被引:1
|
作者
Hu, Xiaoxue [1 ]
Kong, Jiangxu [2 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
[2] China Jiliang Univ, Sch Sci, Hangzhou 310018, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
1-planar graph; dynamic coloring; list coloring; CHROMATIC NUMBER;
D O I
10.3934/math.2022409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is 1-planar if it can be drawn in the plane such that each of its edges is crossed at most once. A dynamic coloring of a graph G is a proper vertex coloring such that for each vertex of degree at least 2, its neighbors receive at least two different colors. The list dynamic chromatic number ch(d)(G) of G is the least number k such that for any assignment of k-element lists to the vertices of G, there is a dynamic coloring of G where the color on each vertex is chosen from its list. In this paper, we show that if G is a 1-planar graph, then ch(d)(G) <= 10. This improves a result by Zhang and Li [16], which says that every 1-planar graph G has ch(d)(G) <= 11.
引用
收藏
页码:7337 / 7348
页数:12
相关论文
共 50 条
  • [1] Dynamic list coloring of 1-planar graphs
    Zhang, Xin
    Li, Yan
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [2] List edge and list total coloring of 1-planar graphs
    Xin Zhang
    Jianliang Wu
    Guizhen Liu
    Frontiers of Mathematics in China, 2012, 7 : 1005 - 1018
  • [3] List edge and list total coloring of 1-planar graphs
    Zhang, Xin
    Wu, Jianliang
    Liu, Guizhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (05) : 1005 - 1018
  • [4] An improved upper bound for the acyclic chromatic number of 1-planar graphs
    Yang, Wanshun
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 275 - 291
  • [5] An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs
    Juan Liu
    Yi Qiao Wang
    Ping Wang
    Lu Zhang
    Wei Fan Wang
    Acta Mathematica Sinica, English Series, 2021, 37 : 262 - 278
  • [6] An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs
    Juan LIU
    Yi Qiao WANG
    Ping WANG
    Lu ZHANG
    Wei Fan WANG
    Acta Mathematica Sinica,English Series, 2021, (02) : 262 - 278
  • [7] An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs
    Liu, Juan
    Wang, Yi Qiao
    Wang, Ping
    Zhang, Lu
    Wang, Wei Fan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) : 262 - 278
  • [8] Equitable coloring in 1-planar graphs
    Cranston, Daniel W.
    Mahmoud, Reem
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [9] Dynamic coloring and list dynamic coloring of planar graphs
    Kim, Seog-Jin
    Lee, Sang June
    Park, Won-Jin
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2207 - 2212
  • [10] Note on improper coloring of 1-planar graphs
    Yanan Chu
    Lei Sun
    Jun Yue
    Czechoslovak Mathematical Journal, 2019, 69 : 955 - 968