Identifying Subgroups of Complex Patients With Cluster Analysis

被引:1
|
作者
Newcomer, Sophia R. [1 ]
Steiner, John F. [1 ]
Bayliss, Elizabeth A. [1 ,2 ]
机构
[1] Kaiser Permanente Colorado, Inst Hlth Res, Denver, CO 80231 USA
[2] Univ Colorado, Dept Family Med, Aurora, CO USA
来源
AMERICAN JOURNAL OF MANAGED CARE | 2011年 / 17卷 / 08期
基金
美国医疗保健研究与质量局;
关键词
CHRONIC CARE MANAGEMENT; IMPROVING PRIMARY-CARE; COLLABORATIVE CARE; ANXIETY DISORDERS; OLDER PATIENTS; RISK-FACTORS; HEALTH; VALIDATION; DEPRESSION; PREVALENCE;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: To illustrate the use of cluster analysis for identifying sub-populations of complex patients who may benefit from targeted care management strategies. Study Design: Retrospective cohort analysis. Methods: We identified a cohort of adult members of an integrated health maintenance organization who had 2 or more of 17 common chronic medical conditions and were categorized in the top 20% of total cost of care for 2 consecutive years (n = 15,480). We used agglomerative hierarchical clustering methods to identify clinically relevant subgroups based on groupings of coexisting conditions. Ward's minimum variance algorithm provided the most parsimonious solution. Results: Ward's algorithm identified 10 clinically relevant clusters grouped around single or multiple "anchoring conditions." The clusters revealed distinct groups of patients including: coexisting chronic pain and mental illness, obesity and mental illness, frail elderly, cancer, specific surgical procedures, cardiac disease, chronic lung disease, gastrointestinal bleeding, diabetes, and renal disease. These conditions co-occurred with multiple other chronic conditions. Mental health diagnoses were prevalent (range 28% to 100%) in all clusters. Conclusions: Data mining procedures such as cluster analysis can be used to identify discrete groups of patients with specific combinations of comorbid conditions. These clusters suggest the need for a range of care management strategies. Although several of our clusters lend themselves to existing care and disease management protocols, care management for other subgroups is less well-defined. Cluster analysis methods can be leveraged to develop targeted care management interventions designed to improve health outcomes. (Am J Manag Care. 2011; 17(8):e324-e332)
引用
收藏
页码:E324 / E332
页数:9
相关论文
共 50 条
  • [1] Identifying Tinnitus Subgroups With Cluster Analysis
    Tyler, Richard
    Coelho, Claudia
    Tao, Pan
    Ji, Haihong
    Noble, William
    Gehringer, Anne
    Gogel, Stephanie
    AMERICAN JOURNAL OF AUDIOLOGY, 2008, 17 (02) : S176 - S184
  • [2] Identifying Subgroups of Type II Diabetes Patients using Cluster Analysis
    Solomon, Tacuma Kwabena
    Rwebangira, Mugizi Robert
    Kurban, Gulriz
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 1753 - 1757
  • [3] Identifying cognitive subgroups in bipolar disorder: A cluster analysis
    Lima, Flavia
    Rabelo-da-Ponte, Francisco Diego
    Bucker, Joana
    Czepielewski, Leticia
    Hasse-Sousa, Mathias
    Telesca, Raissa
    Sole, Brisa
    Reinares, Maria
    Vieta, Eduard
    Rosa, Adriane R.
    JOURNAL OF AFFECTIVE DISORDERS, 2019, 246 : 252 - 261
  • [4] Identifying subgroups in schizophrenia using minor dysmorphic features and cluster analysis
    Scutt, LE
    Chow, E
    Honer, WG
    Hogan, J
    Jones, C
    Weksberg, R
    Bassett, AS
    SCHIZOPHRENIA RESEARCH, 1999, 36 (1-3) : 95 - 96
  • [5] Identifying fibromyalgia subgroups using cluster analysis: Relationships with clinical variables
    Yim, Y-R
    Lee, K-E
    Park, D-J
    Kim, S-H
    Nah, S-S
    Lee, J. H.
    Kim, S-K
    Lee, Y-A
    Hong, S-J
    Kim, H-S
    Lee, H-S
    Kim, H. A.
    Joung, C-, I
    Kim, S-H
    Lee, S-S
    EUROPEAN JOURNAL OF PAIN, 2017, 21 (02) : 374 - 384
  • [6] Identifying subgroups of paediatric chronic pain patients: A cluster-analytic approach
    Wager, J.
    Zernikow, B.
    Darlington, A.
    Vocks, S.
    Hechler, T.
    EUROPEAN JOURNAL OF PAIN, 2014, 18 (09) : 1352 - 1362
  • [7] Identifying patient subgroups in the heterogeneous chronic pain population using cluster analysis
    Rijsdijk, Mienke
    Smits, Hidde M.
    Azizoglu, Hazal R.
    Brugman, Sylvia
    van de Burgt, Yoeri
    Charldorp, Tessa C. van
    Gelder, Dewi J. van
    Grauw, Janny C. de
    Lange, Eline A. van
    Meye, Frank J.
    Strick, Madelijn
    Walravens, Hedi W. A.
    Winkens, Laura H. H.
    Huygen, Frank J. P. M.
    Drylewicz, Julia
    Willemen, Hanneke L. D. M.
    JOURNAL OF PAIN, 2025, 28
  • [8] Cluster Analysis to Identify Possible Subgroups in Tinnitus Patients
    van den Berge, Minke J. C.
    Free, Rolien H.
    Arnold, Rosemarie
    de Kleine, Emile
    Hofman, Rutger
    van Dijk, J. Marc C.
    van Dijk, Pim
    FRONTIERS IN NEUROLOGY, 2017, 8
  • [9] Identifying social cognition subgroups in euthymic patients with bipolar disorder: a cluster analytical approach
    Varo, C.
    Sole, B.
    Jimenez, E.
    Bonnin, C. M.
    Torrent, C.
    Valls, E.
    Lahera, G.
    Martinez-Aran, A.
    Carvalho, A. F.
    Miskowiak, K. W.
    Vieta, E.
    Reinares, M.
    PSYCHOLOGICAL MEDICINE, 2022, 52 (01) : 159 - 168
  • [10] Heartburn Patients Subgroups Defined by Cluster Analysis of Bowel Symptoms
    Zimmerman, Joseph
    GASTROENTEROLOGY, 2010, 138 (05) : S606 - S606