Schrodinger spectra and the effective Hamiltonian of weak KAM theory on the flat torus

被引:7
|
作者
Zanelli, Lorenzo [1 ]
机构
[1] Univ Padua, Dept Math, Padua, Italy
关键词
QUASIMODES;
D O I
10.1063/1.4960741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the link between the spectrum of some periodic Schrodinger type operators and the effective Hamiltonian of the weak KAM theory. We show that the extension of some local quasimodes is linked to the localization of the Schrodinger spectrum. Such a result provides additional information with respect to the well known Bohr-Sommerfeld quantization rules, here in a more general setting than the integrable or quasi-integrable ones. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Weak KAM Theory on the Wasserstein Torus with Multidimensional Underlying Space
    Gangbo, Wilfrid
    Tudorascu, Adrian
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (03) : 408 - 463
  • [2] Minimizers of Dirichlet functionals on the n-torus and the weak KAM theory
    Wolansky, G.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 521 - 545
  • [3] ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR NONLINEAR SCHRODINGER EQUATION
    Cong, Hongzi
    Mi, Lufang
    Shi, Yunfeng
    Wu, Yuan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6599 - 6630
  • [4] ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Wu, Yuan
    Yuan, Xiaoping
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 771 - 794
  • [5] New Identities for Weak KAM Theory
    Evans, Lawrence Craig
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 379 - 392
  • [6] Weak KAM theory for potential MFG
    Cardaliaguet, Pierre
    Masoero, Marco
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3255 - 3298
  • [7] New identities for Weak KAM theory
    Lawrence Craig Evans
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 379 - 392
  • [8] KAM THEORY FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION
    Berti, Massimiliano
    Biasco, Luca
    Procesi, Michela
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (02): : 301 - 373
  • [9] Effective stability and KAM theory
    Delshams, A
    Gutierrez, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (02) : 415 - 490
  • [10] FAST WEAK-KAM INTEGRATORS FOR SEPARABLE HAMILTONIAN SYSTEMS
    Bouillard, Anne
    Faou, Erwan
    Zavidovique, Maxime
    [J]. MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 85 - 117