Feature selection of support vector regression for Quantitative Structure-Activity Relationships (QSAR)

被引:0
|
作者
Huang, L [1 ]
Lu, HM [1 ]
Dai, Y [1 ]
机构
[1] Univ Illinois, Dept Bioengn MC063, Chicago, IL 60607 USA
来源
METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES | 2003年
关键词
QSAR; support vector regression; feature selection; grid search; linear programs;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Predicting the biological activity of a compound from its chemical structure is a fundamental problem in drug design. The Support Vector (SV) Machine regression is one of the powerful machine learning methods developed for this purpose in Quantitative Structure-Activity Relationships (QSAR) Analysis. A procedure based on linear programming is proposed for feature selection of SV regression. This new approach demonstrates favorable behavior in comparison with Partial Least Squares (PLS) regression method and a hybrid procedure of combining (1) genetic programming and (2) a neural network for several real compound data.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 50 条
  • [1] Application of support vector regression to Quantitative Structure-Activity Relationships(QSAR)
    Lu, HM
    Huang, L
    Dai, Y
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 942 - 945
  • [2] Feature selection in quantitative structure-activity relationships
    Walters, WP
    Goldman, BB
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2005, 8 (03) : 329 - 333
  • [3] Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR)
    Khan, Pathan Mohsin
    Roy, Kunal
    EXPERT OPINION ON DRUG DISCOVERY, 2018, 13 (12) : 1075 - 1089
  • [4] Structure-activity relationships in chromatography: Retention prediction of oligonucleotides with support vector regression
    Kohlbacher, Oliver
    Quinten, Sascha
    Sturm, Marc
    Mayr, Bettina M.
    Huber, Christian G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) : 7009 - 7012
  • [5] QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSAR) STUDIES OF BISBENZAMIDINES WITH ANTIFUNGAL ACTIVITY
    de Almeida, Vera L.
    Dias Lopes, Julio Cesar
    Oliveira, Sheila Rodrigues
    Donnici, Claudio L.
    Montanari, Carlos A.
    QUIMICA NOVA, 2010, 33 (07): : 1482 - 1489
  • [6] Modelling of the structure-activity quantitative relationships (QSAR) of tipifarnib analogues with antichagasic activity
    Granados-Tavera K.
    Tilvez E.A.
    Ahumedo-Monterrosa M.
    Informacion Tecnologica, 2019, 30 (01): : 3 - 14
  • [7] Quantitative studies on Structure-Activity and Structure-Property Relationships (QSAR/QSPR)
    Gonzalez-Diaz, Humberto
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2008, 8 (18) : 1554 - 1554
  • [8] Quantitative structure-activity relationships (QSAR):: studies of inhibitors of tyrosine kinase
    Shen, Q
    Lü, QZ
    Jiang, JH
    Shen, GL
    Yu, RQ
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2003, 20 (01) : 63 - 71
  • [9] On the nature, evolution and future of quantitative structure-activity relationships (QSAR) in toxicology
    Veith, GD
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2004, 15 (5-6) : 323 - 330
  • [10] Quantitative structure-activity relationships (QSAR) of cinnamic acid bird repellents
    Watkins, RW
    Lumley, JA
    Gill, EL
    Bishop, JD
    Langton, SD
    MacNicoll, AD
    Price, NR
    Drew, MGB
    JOURNAL OF CHEMICAL ECOLOGY, 1999, 25 (12) : 2825 - 2845