A Convolutional Neural Network Approach for Classifying Leukocoria

被引:0
|
作者
Henning, Ryan [1 ]
Rivas-Perea, Pablo [1 ]
Shaw, Bryan [2 ]
Hamerly, Greg [1 ]
机构
[1] Baylor Univ, Dept Comp Sci, Waco, TX 76798 USA
[2] Baylor Univ, Dept Chem, Waco, TX 76798 USA
关键词
machine learning; retinoblastoma; leukocoria;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use Convolutional Neural Networks to detect leukocoria, or white-eye reflections, in recreational photography. Leukocoria is the most prominent symptom of retinoblastoma, a solid-tumor cancer of the eye that occurs most often in young children. We trained several networks for the task, using training images downloaded from Flickr. We achieved low error rates (< 3%) for classification of eye images into three classes: normal, leukocoric, and pseudo-leukocoric. We also provide a method for tuning the outputs of a trained network to match desired true-positive/false-positive rates.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [1] Classifying Radio Galaxies with the Convolutional Neural Network
    Aniyan, A. K.
    Thorat, K.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2017, 230 (02):
  • [2] Classifying Malware Images with Convolutional Neural Network Models
    Bensaoud, Ahmed
    Abudawaood, Nawaf
    Kalita, Jugal
    International Journal of Network Security, 2020, 22 (06) : 1022 - 1031
  • [3] One Dimensional Convolutional Neural Network for Classifying Sinusitis
    Wirasati, Ilsya
    Rustam, Zuherman
    Aurellia, Jane Eva
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 1, 2022, 1417 : 561 - 570
  • [4] Convolutional neural network for classifying the stages of the cell cycle
    Edgar F. Duque-Vazquez
    Jonathan Cepeda-Negrete
    Joel E. López-Meza
    Noe Saldaña-Robles
    Raul E. Sanchez-Yanez
    Neural Computing and Applications, 2025, 37 (4) : 2617 - 2626
  • [5] Classifying Vehicles with Convolutional Neural Network and Feature Encoding
    Wang, Shuang
    Li, Zhengqi
    Zhang, Haijun
    Ji, Yuzhu
    Li, Yan
    2016 IEEE 14TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2016, : 784 - 787
  • [6] Classifying Malware Using Convolutional Gated Neural Network
    Kim, Chang Hoon
    Kabanga, Espoir K.
    Kang, Sin-Jae
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 40 - 44
  • [7] Visualising Static Features and Classifying Android Malware Using a Convolutional Neural Network Approach
    Kiraz, Omer
    Dogru, Ibrahim Alper
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [8] A Convolutional Neural Network Approach to Classifying Activities Using Knee Instrumented Wearable Sensors
    Bloomfield, Riley A.
    Teeter, Matthew G.
    McIsaac, Kenneth A.
    IEEE SENSORS JOURNAL, 2020, 20 (24) : 14975 - 14983
  • [9] Efficient knowledge distillation for hybrid models: A vision transformer-convolutional neural network to convolutional neural network approach for classifying remote sensing images
    Song, Huaxiang
    Yuan, Yuxuan
    Ouyang, Zhiwei
    Yang, Yu
    Xiang, Hui
    IET CYBER-SYSTEMS AND ROBOTICS, 2024, 6 (03)
  • [10] A convolutional neural network approach to classifying urban spaces using generative tools for data augmentation
    Medel-Vera, Carlos
    Vidal-Estevez, Pelayo
    Madler, Thomas
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2024, 22 (03) : 392 - 411