Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling

被引:6
|
作者
Liu, Rui-Yin [1 ,3 ]
Tao, Jian [1 ]
Shi, Ning-Zhong [1 ]
He, Xuming [2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Jilin, Peoples R China
[2] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[3] Shenyang Normal Univ, Coll Math & Syst Sci, Shenyang 110034, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixture normal models; Model selection; Classification; Markov chain Monte Carlo method; Reversible jump algorithms; RISK-ASSESSMENT; MARKOV-CHAINS; QUANTITATIVE RESPONSES; DENSITY-ESTIMATION; MIXTURES; DISTRIBUTIONS; COMPUTATION; SYSTEMS; NUMBER; MODEL;
D O I
10.1016/j.csda.2010.10.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In some biological experiments It is quite common that laboratory subjects differ in their patterns of susceptibility to a treatment Finite mixture models are useful in those situations In this paper we model the number of components and the component parameters jointly and base Inference about these quantities on their posterior probabilities making use of the reversible jump Markov chain Monte Carlo methods In particular we apply the methodology to the analysis of univariate normal mixtures with multidimensional parameters using a hierarchical prior model that allows weak priors while avoiding improper priors in the mixture context The practical significance of the proposed method is Illustrated with a dose-response data set (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:1498 / 1508
页数:11
相关论文
共 50 条
  • [1] A Bayesian Lasso via reversible-jump MCMC
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. SIGNAL PROCESSING, 2011, 91 (08) : 1920 - 1932
  • [2] Segmentation of color images via reversible jump MCMC sampling
    Kato, Zoltan
    [J]. IMAGE AND VISION COMPUTING, 2008, 26 (03) : 361 - 371
  • [3] Bayesian conformational analysis of ring molecules through reversible jump MCMC
    Nolsoe, K
    Kessler, M
    Pérez, J
    Madsen, H
    [J]. JOURNAL OF CHEMOMETRICS, 2005, 19 (08) : 412 - 426
  • [4] Annealed Importance Sampling Reversible Jump MCMC Algorithms
    Karagiannis, Georgios
    Andrieu, Christophe
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 623 - 648
  • [5] Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    Andrieu, C
    Doucet, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (10) : 2667 - 2676
  • [6] Sequential reversible jump MCMC for dynamic Bayesian neural networks
    Nguyen, Nhat Minh
    Tran, Minh-Ngoc
    Chandra, Rohitash
    [J]. NEUROCOMPUTING, 2024, 564
  • [7] A Reversible Jump MCMC in Bayesian Blind Deconvolution With a Spherical Prior
    Traulle, Benjamin
    Bidon, Stephanie
    Roque, Damien
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2372 - 2376
  • [8] A bayesian approach to map QTLs using reversible jump MCMC
    da Silva, Joseane Padilha
    Leandro, Roseli Aparecida
    [J]. CIENCIA E AGROTECNOLOGIA, 2009, 33 (04): : 1061 - 1070
  • [9] Comments on "Joint Bayesian Model Selection and Estimation of Noisy Sinusoids Via Reversible Jump MCMC"
    Roodaki, Alireza
    Bect, Julien
    Fleury, Gilles
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (14) : 3653 - 3655
  • [10] Library-Based Linear Unmixing for Hyperspectral Imagery via Reversible Jump MCMC Sampling
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. 2009 IEEE AEROSPACE CONFERENCE, VOLS 1-7, 2009, : 1849 - +