Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature

被引:64
|
作者
Liu, Anmin [1 ]
Yang, Qiyue [1 ]
Ren, Xuefeng [2 ]
Meng, Fanning [1 ]
Gao, Liguo [1 ]
Gao, Mengfan [1 ]
Yang, Yanan [1 ]
Ma, Tingli [3 ,4 ]
Wu, Gang [5 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Sch Chem Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Ocean Sci & Technol, Panjin 124221, Peoples R China
[3] China Jiliang Univ, Dept Mat Sci & Engn, Hangzhou 310018, Peoples R China
[4] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
[5] Univ Buffalo State Univ New York, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
DECORATED TI3C2 MXENE; LAYERED TI3C2; PERFORMANCE; NANOSHEETS; COMPOSITE; FABRICATION; CAPACITANCE; EVOLUTION; ANODES;
D O I
10.1016/j.ceramint.2019.11.008
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ti3C2, produced by selective etching of Al from MAX-phase Ti3AlC2, is the most widely studied two-dimensional MXene material in many research fields. However, the synthesis of highly pure Ti3AlC2 typically requires high temperatures, resulting in high-energy demands and high production costs. To reduce the synthesis temperature, we present a new NaCl-assisted approach for synthesizing Ti3AlC2. Ti3AlC2 was synthesized from a Ti2AlC-TiC mixture at 1150 degrees C under an argon atmosphere in a tube furnace. The successful synthesis of highly pure Ti3AlC2 with an ideal crystal structure and the subsequent preparation of Ti3C2 were confirmed by material characterization and simulation results. This molten-salt-assisted method is more efficient in terms of energy and cost because it lowers the synthesis temperature of MAX-phase Ti3AlC2 by 200 degrees C. When assisted by appropriate kind or quantity of molten-salt, the synthesis temperature and synthesis time may be further reduced. These findings may provide a new approach for lower-temperature synthesis of other MAX-phase materials and greatly widen the applications of MAX and MXene materials.
引用
收藏
页码:6934 / 6939
页数:6
相关论文
共 50 条
  • [1] Creep of the Ti3AlC2 MAX-phase ceramics
    Boyko, Yu, I
    Bogdanov, V. V.
    Gevorkyan, E. S.
    Vovk, R. V.
    Korshak, V. F.
    Kolesnichertho, V. A.
    FUNCTIONAL MATERIALS, 2019, 26 (01): : 83 - 87
  • [2] Parameters of the Unit Cell of the Ti3AlC2 MAX-Phase with Hydrogen
    Grib, Alexander
    Samsonik, Alexander
    Prikhna, Tatiana
    Serbenyuk, Tetyana
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (10):
  • [3] Synthesis of MXene Ti3C2 by selective etching of MAX-phase Ti3AlC2
    Kvashina, T. S.
    Uvarov, N. F.
    Korchagin, M. A.
    Krutskiy, Yu L.
    Ukhina, A., V
    MATERIALS TODAY-PROCEEDINGS, 2020, 31 : 592 - 594
  • [4] An experimental approach to delineate the reaction mechanism of Ti3AlC2 MAX-Phase formation
    Yunus, Mohammad
    Maji, Bikas C.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (08) : 3131 - 3145
  • [5] Synthesis of 2D Material MXene from Ti3AlC2 MAX-phase for Electromagnetic Shielding Applications
    Kumar, Rakesh
    Maji, Bikas C.
    Krishnan, Madangopal
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [6] Creep and Viscoelasticity of the Ti3AlC2 MAX Phase at Room Temperature
    S. N. Dub
    A. I. Tyurin
    T. A. Prikhna
    Journal of Superhard Materials, 2020, 42 : 294 - 301
  • [7] Creep and Viscoelasticity of the Ti3AlC2 MAX Phase at Room Temperature
    Dub, S. N.
    Tyurin, A., I
    Prikhna, T. A.
    JOURNAL OF SUPERHARD MATERIALS, 2020, 42 (05) : 294 - 301
  • [8] Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt
    Nagornov, I. A.
    Sapronova, V. M.
    Gorobtsov, Ph. Y.
    Mokrushin, A. S.
    Simonenko, N. P.
    Simonenko, E. P.
    Kuznetsov, N. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (14) : 2184 - 2192
  • [9] Preparation of Ti3AlC2 MAX-phase as a precursor material using industrial waste carbon flex for MXene synthesis
    Sharma, Nutan
    Charan, Sheetal
    Kumar, Deepak
    Saini, Sachin
    Sulania, Indra
    Vishwakarma, Ankit Kumar
    Srivastava, Subodh
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 55706 - 55713
  • [10] Formation of Bulk Samples from the Ti3AlC2 MAX-Phase Powder by Selective Laser Sintering
    Krinitcyn, M. G.
    Firsina, I. A.
    Baranovskiy, A., V
    Ragulina, M. P.
    INORGANIC MATERIALS-APPLIED RESEARCH, 2022, 13 (03) : 641 - 645