Bounded and periodic solutions for abstract functional difference equations with summable dichotomies: Applications to Volterra systems

被引:0
|
作者
Del Campo, Luis [1 ]
Pinto, Manuel [2 ]
Vidal, Claudio [3 ]
机构
[1] Univ Catolica Norte, Fac Ciencias, Dept Matemat, Casilla 1280, Antofagasta, Chile
[2] Univ Chile, Dept Matemat, Fac Ciencias, Casilla 653, Santiago, Chile
[3] Univ Bio Bio, Fac Ciencias, Dept Matemat, GISDA, Casilla 5-C, Concepcion, Chile
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 03期
关键词
Retarded functional difference equations; Phase spaces; Discrete summable dichotomies; Bounded solutions; Contraction fixed point theorem; Schauder fixed point theorem; Volterra difference equations; UNBOUNDED DELAY; INFINITE DELAY; ASYMPTOTIC-BEHAVIOR; PHASE-SPACE; CONVERGENT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the existence of summable dichotomies in linear functional difference equations, the Contraction Principle and the Schauder Fixed Point Theorem, we obtain the existence of bounded and periodic solutions under quite general hypotheses for nonlinear functional difference equations on phase spaces. Applications of our main results to Volterra equations are given. Moreover, examples are also given to illustrate obtained results.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 50 条