Vacuum decay in the Lorentzian path integral

被引:8
|
作者
Hayashi, Takumi [1 ,2 ]
Kamada, Kohei [2 ]
Oshita, Naritaka [3 ]
Yokoyama, Jun'ichi [1 ,2 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130033, Japan
[2] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe RESCEU, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130033, Japan
[3] RIKEN iTHEMS, Wako, Saitama 3510198, Japan
[4] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU, UTIAS, WPI, Kashiwa, Chiba 2778568, Japan
[5] Univ Tokyo, Trans Scale Quantum Sci Inst, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130033, Japan
关键词
cosmological phase transitions; physics of the early universe; FALSE VACUUM; STANDARD MODEL; BLACK-HOLES; QUANTUM-GRAVITY; OPEN UNIVERSE; HIGGS MASS; CREATION; BOUNDS; FATE; METASTABILITY;
D O I
10.1088/1475-7516/2022/05/041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the Lorentzian path integral to the decay of a false vacuum and estimate the false-vacuum decay rate. To make the Lorentzian path integral convergent, the deformation of an integration contour is performed by following the Picard-Lefschetz theory. We show that the nucleation rate of a critical bubble, for which the corresponding bounce action is extremized, has the same exponent as the Euclidean approach. We also extend our computation to the nucleation of a bubble larger or smaller than the critical one to which the Euclidean formalism is not applicable.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Vacuum decay via Lorentzian wormholes
    Rosales, JL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (07): : 1191 - 1199
  • [2] A discrete history of the Lorentzian path integral
    Loll, R
    QUANTUM GRAVITY: FROM THEORY TO EXPERIMENTAL SEARCH, 2003, 631 : 137 - 171
  • [3] Nonperturbative Lorentzian path integral for gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (05) : 924 - 927
  • [4] LORENTZIAN PATH INTEGRAL FOR MINISUPERSPACE COSMOLOGY
    BROWN, JD
    MARTINEZ, EA
    PHYSICAL REVIEW D, 1990, 42 (06): : 1931 - 1943
  • [5] Complex saddles and Euclidean wormholes in the Lorentzian path integral
    Loges, Gregory J.
    Shiu, Gary
    Sudhir, Nidhi
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [6] Lorentzian worldline path integral approach to Schwinger effect
    Rajeev, Karthik
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [7] Complex saddles and Euclidean wormholes in the Lorentzian path integral
    Gregory J. Loges
    Gary Shiu
    Nidhi Sudhir
    Journal of High Energy Physics, 2022
  • [8] Parametrized path approach to vacuum decay
    Michel, Florent
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [9] Lorentzian path integral in Kantowski-Sachs anisotropic cosmology
    Ghosh, Saumya
    Acharya, Arnab
    Gangopadhyay, Sunandan
    Panigrahi, Prasanta K.
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [10] Remote Hawking-Moss instanton and the Lorentzian path integral
    Saito, Daiki
    Oshita, Naritaka
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):