REAL-TIME CONJUGATE GRADIENTS FOR ONLINE FMRI CLASSIFICATION

被引:0
|
作者
Xu, Hao [1 ]
Xi, Yongxin Taylor [1 ]
Lee, Ray [2 ]
Ramadge, Peter J. [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
关键词
Online learning; Partial Least Squares; Conjugate Gradient; fMRI classification; PARTIAL LEAST-SQUARES; REGRESSION; PLS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Real-time functional magnetic resonance imaging (rtfMRI) enables classification of brain activity during data collection thus making inference results accessible to both the subject and experimenter during the experiment. The major challenge of rtfMRI is the potential loss of inference accuracy due to the resource limitations that rtfMRI imposes. For example, many widely-used analysis methods in off-line neuroimaging are too time-consuming for rtfMRI. We develop an online, real-time, conjugate gradient (rtCG) algorithm that learns to classify brain states as data is being collected. The algorithm is closely connected to partial least squares (PLS), a popular off-line analysis method. We give a theoretical comparison with PLS and show that the algorithm generates identical results to PLS for appropriate initial conditions. However, in practice using an alternative initial condition yields faster convergence. Experimental results show that the online rtCG classifier: is fast (training time < 0.5s), is accurate (prediction accuracy approximate to 90%), can adapt to a varying stimulus, and yields better classification performance than standard PLS applied to a sliding window of recent data.
引用
收藏
页码:565 / 568
页数:4
相关论文
共 50 条
  • [1] Online Spatial Normalization for Real-Time fMRI
    Li, Xiaofei
    Yao, Li
    Ye, Qing
    Zhao, Xiaojie
    [J]. PLOS ONE, 2014, 9 (07):
  • [2] Histograms of Motion Gradients for Real-time Video Classification
    Duta, Ionut C.
    Uijlings, Jasper R. R.
    Nguyen, Tuan A.
    Aizawa, Kiyoharu
    Hauptmann, Alexander G.
    Ionescu, Bogdan
    Sebe, Nicu
    [J]. 2016 14TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2016,
  • [3] Real-Time fMRI
    Scharnowski, F.
    Mathiak, K.
    Weiskopf, N.
    [J]. KLINISCHE NEUROPHYSIOLOGIE, 2009, 40 (04) : 214 - 221
  • [4] Real-time fMRI using brain-state classification
    LaConte, Stephen M.
    Peltier, Scott J.
    Hu, Xiaoping P.
    [J]. HUMAN BRAIN MAPPING, 2007, 28 (10) : 1033 - 1044
  • [5] ONLINE KERNEL SVM FOR REAL-TIME FMRI BRAIN STATE PREDICTION
    Xi, Yongxin Taylor
    Xu, Hao
    Lee, Ray
    Ramadge, Peter J.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2040 - 2043
  • [6] Online tracking of the contents of conscious perception using real-time fMRI
    Reichert, Christoph
    Fendrich, Robert
    Bernarding, Johannes
    Tempelmann, Claus
    Hinrichs, Hermann
    Rieger, Jochem W.
    [J]. FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [7] Applications of real-time fMRI
    decharms, R. Christopher
    [J]. NATURE REVIEWS NEUROSCIENCE, 2008, 9 (09) : 720 - 729
  • [8] Applications of real-time fMRI
    R. Christopher deCharms
    [J]. Nature Reviews Neuroscience, 2008, 9 : 720 - 729
  • [9] Real-Time Classification of Real-Time Communications
    Perna, Gianluca
    Markudova, Dena
    Trevisan, Martino
    Garza, Paolo
    Meo, Michela
    Munafo, Maurizio Matteo
    Carofiglio, Giovanna
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4676 - 4690
  • [10] Online decoding of object-based attention using real-time fMRI
    Niazi, Adnan M.
    van den Broek, Philip L. C.
    Klanke, Stefan
    Barth, Markus
    Poel, Mannes
    Desain, Peter
    van Gerven, Marcel A. J.
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2014, 39 (02) : 319 - 329