Landmark/Image-based Deformable Registration of Gene Expression Data

被引:0
|
作者
Kurkure, Uday [1 ]
Le, Yen H. [1 ]
Paragios, Nikos [1 ,2 ,3 ]
Carson, James P. [4 ]
Ju, Tao [5 ]
Kakadiaris, Ioannis A. [1 ]
机构
[1] Univ Houston, Houston, TX 77004 USA
[2] Ecole Cent Paris, Lab MAS, Chatenay Malabry, France
[3] INRIA Saclay Ile De France, Equipe GALEN, Palaiseau, France
[4] Pacific Northwest Natl Lab, Richland, WA USA
[5] Washington Univ, St Louis, MO USA
关键词
IMAGE REGISTRATION; ATLAS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis of gene expression patterns in brain images obtained from high-throughput in situ hybridization requires accurate and consistent annotations of anatomical regions/subregions. Such annotations are obtained by mapping an anatomical atlas onto the gene expression images through intensity- and/or landmark-based registration methods or deformable model-based segmentation methods. Due to the complex appearance of the gene expression images, these approaches require a pre-processing step to determine landmark correspondences in order to incorporate landmark-based geometric constraints. In this paper, we propose a novel method for landmark-constrained, intensity-based registration without determining landmark correspondences a priori. The proposed method performs dense image registration and identifies the landmark correspondences, simultaneously, using a single higher-order Markov Random Field model. In addition, a machine learning technique is used to improve the discriminating properties of local descriptors for landmark matching by projecting them in a Hamming space of lower dimension. We qualitatively show that our method achieves promising results and also compares well, quantitatively, with the expert's annotations, outperforming previous methods.
引用
收藏
页码:1089 / 1096
页数:8
相关论文
共 50 条
  • [1] Hybrid multiscale landmark and deformable image registration
    Paquin, Dana
    Levy, Doron
    Xing, Lei
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (04) : 711 - 737
  • [2] Automated landmark-guided deformable image registration
    Kearney, Vasant
    Chen, Susie
    Gu, Xuejun
    Chiu, Tsuicheng
    Liu, Honghuan
    Jiang, Lan
    Wang, Jing
    Yordy, John
    Nedzi, Lucien
    Mao, Weihua
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (01): : 101 - 116
  • [3] Landmark-Driven Interactive Deformable Image Registration
    Shusharina, N.
    Pieper, S.
    Sharp, G.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [4] Combined image-based and biomechanical deformable image registration of extreme anatomical changes.
    Nix, M.
    Gregory, S.
    Aldred, M.
    Aspin, L.
    Al-Qaisieh, B.
    Lilley, J.
    Appelt, A.
    Dickinson, P.
    Murray, L.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S552 - S553
  • [5] Brain-Shift Correction with Image-Based Registration and Landmark Accuracy Evaluation
    Wein, Wolfgang
    [J]. SIMULATION, IMAGE PROCESSING, AND ULTRASOUND SYSTEMS FOR ASSISTED DIAGNOSIS AND NAVIGATION, 2018, 11042 : 146 - 151
  • [6] Quantifying registration uncertainties in image-based data mining
    Osorio, E. M. Vasquez
    McWilliam, A.
    Kennedy, J.
    Faivre-Finn, C.
    Van Herk, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S150 - S151
  • [7] Fast and automatic image-based registration of TLS data
    Weinmann, Ma.
    Weinmann, Mi.
    Hinz, S.
    Jutzi, B.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) : S62 - S70
  • [8] Image registration for image-based rendering
    Sin, AMK
    Lau, RWH
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (02) : 241 - 252
  • [9] Unsupervised Deformable Image Registration in a Landmark Scarcity Scenario: Choroid OCTA
    Lopez-Varela, Emilio
    Novo, Jorge
    Fernandez-Vigo, Jose Ignacio
    Moreno-Morillo, Francisco Javier
    Ortega, Marcos
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 89 - 99
  • [10] FULLY AUTOMATIC IMAGE-BASED REGISTRATION OF UNORGANIZED TLS DATA
    Weinmann, Martin
    Jutzi, Boris
    [J]. ISPRS WORKSHOP LASER SCANNING 2011, 2011, 38-5 (W12): : 55 - 60