Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model

被引:38
|
作者
Sharma, Rahul [1 ]
Schreck, John S. [2 ]
Romano, Flavio [3 ]
Louis, Ard A. [4 ]
Doye, Jonathan P. K. [5 ]
机构
[1] Indian Inst Technol Roorkee, Dept Chem, Roorkee 247667, Uttar Pradesh, India
[2] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[3] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, I-30123 Venice, Italy
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
[5] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
DNA nanotechnology; self-assembly; molecular simulation; DNA origami; coarse-grained modeling; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-SCATTERING; ORIGAMI NANOSTRUCTURES; CONFORMATIONAL DYNAMICS; NANOSCALE SHAPES; DRUG-RESISTANCE; CANCER-THERAPY; FOLDING DNA; NANOTECHNOLOGY; MECHANISMS;
D O I
10.1021/acsnano.7b06470
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As detailed structural characterizations of large complex DNA nanostructures are hard to obtain experimentally, particularly if they have substantial flexibility, coarse-grained modeling can potentially provide an important complementary role. Such modeling can provide a detailed-view of both the average structure and the structural fluctuations, as well as providing insight into how the nanostructure's design determines its structural properties. Here, we present a case study of jointed DNA nanostructures using the oxDNA model. In particular, we consider archetypal hinge and sliding joints, as well as more complex structures involving a number of such coupled joints. Our results highlight how the nature of the motion in these structures can sensitively depend on the precise details of the joints. Furthermore, the generally good agreement with experiments illustrates the power of this approach and suggests the use of such modeling to prescreen the properties of putative designs.
引用
收藏
页码:12426 / 12435
页数:10
相关论文
共 50 条
  • [1] Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model
    Schreck, John S.
    Romano, Flavio
    Zimmer, Matthew H.
    Louis, Ard A.
    Doye, Jonathan P. K.
    [J]. ACS NANO, 2016, 10 (04) : 4236 - 4247
  • [2] The “sugar” coarse-grained DNA model
    N. A. Kovaleva
    I. P. Koroleva (Kikot)
    M. A. Mazo
    E. A. Zubova
    [J]. Journal of Molecular Modeling, 2017, 23
  • [3] The "sugar" coarse-grained DNA model
    Kovaleva, N. A.
    Koroleva , I. P.
    Mazo, M. A.
    Zubova, E. A.
    [J]. JOURNAL OF MOLECULAR MODELING, 2017, 23 (02)
  • [4] A coarse-grained model for DNA origami
    Reshetnikov, Roman V.
    Stolyarova, Anastasia V.
    Zalevsky, Arthur O.
    Panteleev, Dmitry Y.
    Pavlova, Galina V.
    Klinov, Dmitry V.
    Golovin, Andrey V.
    Protopopova, Anna D.
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (03) : 1102 - 1112
  • [5] New coarse-grained DNA model
    Kikot I.P.
    Savin A.V.
    Zubova E.A.
    Mazo M.A.
    Gusarova E.B.
    Manevitch L.I.
    Onufriev A.V.
    [J]. Biophysics, 2011, 56 (3) : 387 - 392
  • [6] Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations
    Benson, Erik
    Lolaico, Marco
    Tarasov, Yevgen
    Gadin, Andreas
    Hogberg, Bjorn
    [J]. ACS NANO, 2019, 13 (11) : 12591 - 12598
  • [7] DNA Nanotweezers Studied with a Coarse-Grained Model of DNA
    Ouldridge, Thomas E.
    Louis, Ard A.
    Doye, Jonathan P. K.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (17)
  • [8] DNA Duplex Formation with a Coarse-Grained Model
    Maciejczyk, Maciej
    Spasic, Aleksandar
    Liwo, Adam
    Scheraga, Harold A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) : 5020 - 5035
  • [9] A polarizable coarse-grained water model for coarse-grained proteins simulations
    Ha-Duong, Tap
    Basdevant, Nathalie
    Borgis, Daniel
    [J]. CHEMICAL PHYSICS LETTERS, 2009, 468 (1-3) : 79 - 82
  • [10] Modelling and simulation of DNA hydrogel with a coarse-grained model
    Wang Xi
    Li Ming
    Ye Fang-Fu
    Zhou Xin
    [J]. ACTA PHYSICA SINICA, 2017, 66 (15)