Algorithm-Driven Paradigms for Freeform Optical Engineering

被引:6
|
作者
Fan, Jonathan A. [1 ]
Chen, Mingkun [1 ]
Jiang, Jiaqi [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
ACS PHOTONICS | 2022年 / 9卷 / 09期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Optical engineering; Performance bounds; Freeform optimization; Maxwell simulator; Machine learning; Fabrication; DOMAIN DECOMPOSITION METHOD; INVERSE DESIGN; TOPOLOGY OPTIMIZATION; METASURFACES; COMPACT;
D O I
10.1021/acsphotonics.2c00612
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advances in modern manufacturing have enabled the multiscalar patterning of dielectric media with nearly arbitrary layouts, presenting unique opportunities to revolutionize the design and fabrication pipeline for photonic technologies. In this Perspective, we discuss how algorithms based on classical optimization and deep learning are establishing a new conceptual framework for freeform optical engineering. These tools can specify suitable design parameters for a desired objective, automate the high-speed optimization of freeform devices, and augment manufacturing processes to mitigate challenges set by freeform fabrication. A central feature of many of these algorithms is their utilization of data and physics to model and exploit high-dimensional relationships between geometric structure and electromagnetic response within the constraints of Maxwell's equations. We anticipate that these algorithm-driven methods will streamline optical systems design at the physical limits of structured media and become standard academic and industry tools for scientists and engineers.
引用
收藏
页码:2860 / 2871
页数:12
相关论文
共 50 条
  • [1] Algorithm-driven synthesis of data conversion architectures
    Horta, NC
    Franca, JE
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1997, 16 (10) : 1116 - 1135
  • [2] ALGORITHM-DRIVEN IMPROVEMENT IN VITAMIN D MANAGEMENT
    O'Brien, C. E.
    Johnston, S.
    Henshaw, J. A.
    Com, G.
    [J]. PEDIATRIC PULMONOLOGY, 2014, 49 : 427 - 428
  • [3] Data-driven CAD or Algorithm-Driven CAD? Competitors or Collaborators?
    Jain, Rajeev
    Kukkal, Pankaj
    [J]. PROCEEDINGS OF THE 2020 ACM/IEEE 2ND WORKSHOP ON MACHINE LEARNING FOR CAD (MLCAD '20), 2020, : 69 - 69
  • [4] Virtual Competition The Promise and Perils of the Algorithm-Driven Economy
    Nalebuff, Barry
    [J]. SCIENCE, 2016, 354 (6312) : 560 - 560
  • [5] An algorithm-driven approach to error analysis for multidimensional integration
    Hickernell, Fred J.
    Dick, Josef
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (02) : 167 - 189
  • [6] Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy
    Van de Mark, Robert
    [J]. OSGOODE HALL LAW JOURNAL, 2018, 55 (02): : 614 - 619
  • [8] Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting
    Csernoch, Maria
    Biro, Piroska
    Math, Janos
    [J]. IEEE ACCESS, 2021, 9 : 153943 - 153959
  • [9] Applicants' Fairness Perceptions of Algorithm-Driven Hiring Procedures
    Lavanchy, Maude
    Reichert, Patrick
    Narayanan, Jayanth
    Savani, Krishna
    [J]. JOURNAL OF BUSINESS ETHICS, 2023, 188 (01) : 125 - 150
  • [10] Applicants’ Fairness Perceptions of Algorithm-Driven Hiring Procedures
    Maude Lavanchy
    Patrick Reichert
    Jayanth Narayanan
    Krishna Savani
    [J]. Journal of Business Ethics, 2023, 188 : 125 - 150