A two-step rejection procedure for testing multiple hypotheses

被引:75
|
作者
Li, Jianjun [1 ]
机构
[1] Merck Res Labs, N Wales, PA 19454 USA
关键词
Bonferroni inequality; multiple tests; strong control of family-wise error rate;
D O I
10.1016/j.jspi.2007.04.032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers p-value based step-wise rejection procedures for testing multiple hypotheses. The existing procedures have used constants as critical values at all steps. With the intention of incorporating the exact magnitude of the p-values at the earlier steps into the decisions at the later steps, this paper applies a different strategy that the critical values at the later steps are determined as functions of the p-values from the earlier steps. As a result, we have derived a new equality and developed a two-step rejection procedure following that. The new procedure is a short-cut of a step-up procedure, and it possesses great simplicity. In terms of power, the proposed procedure is generally comparable to the existing ones and exceptionally superior when the largest p-value is anticipated to be less than 0.5. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1521 / 1527
页数:7
相关论文
共 50 条
  • [1] An optimal procedure for multiple hypotheses testing
    Julián de la Horra
    María Teresa Rodríguez-Bernal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 327 - 335
  • [2] An optimal procedure for multiple hypotheses testing
    de la Horra, Julian
    Teresa Rodriguez-Bernal, Maria
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 327 - 335
  • [3] The "Texas Two-Step'' procedure
    Chan, Edward Y.
    Reul, Ross M.
    Kim, Min P.
    Reardon, Michael J.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (01): : 285 - 287
  • [4] A two-step multiple comparison procedure for a large number of tests and multiple treatments
    Jiang, Hongmei
    Doerge, Rebecca W.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2006, 5
  • [5] An improved closed procedure for testing multiple hypotheses
    Lu, Zeng-Hua
    STATISTICS IN MEDICINE, 2020, 39 (26) : 3772 - 3786
  • [6] Fuzzy Method for Multiple Hypotheses Testing Procedure
    Taweesapaya, Veerapat
    Thongteeraparp, Ampai
    Wanishsakpong, Wandee
    Sudsila, Pupe
    Volodin, Andrei
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) : 4387 - 4393
  • [7] A two-step procedure of fractal analysis
    Dedovich T.G.
    Tokarev M.V.
    Physics of Particles and Nuclei Letters, 2016, 13 (2) : 178 - 189
  • [8] A two-step procedure for testing partial parameter stability in cointegrated regression models
    Kejriwal, Mohitosh
    Perron, Pierre
    Yu, Xuewen
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (02) : 219 - 237
  • [9] Comparison one-step procedure with two-step procedure in percutaneous nephrolithotomy
    Chen, Szu-Han
    Wu, Wen-Jeng
    Chou, Yii-Her
    Yeh, Hsin-Chih
    Tsai, Chia-Chun
    Chueh, Kuang-Shun
    Hou, Nien-Ting
    Chiu, Siou-Jin
    Tu, Hung-Pin
    Li, Ching-Chia
    UROLITHIASIS, 2014, 42 (02) : 121 - 126
  • [10] Comparison one-step procedure with two-step procedure in percutaneous nephrolithotomy
    Szu-Han Chen
    Wen-Jeng Wu
    Yii-Her Chou
    Hsin-Chih Yeh
    Chia-Chun Tsai
    Kuang-Shun Chueh
    Nien-Ting Hou
    Siou-Jin Chiu
    Hung-Pin Tu
    Ching-Chia Li
    Urolithiasis, 2014, 42 : 121 - 126