Sliced inverse regression for integrative multi-omics data analysis

被引:2
|
作者
Jain, Yashita [1 ]
Ding, Shanshan [1 ,2 ]
Qiu, Jing [1 ,2 ]
机构
[1] Univ Delaware, Ctr Bioinformat & Computat Biol, 15 Innovat Way, Newark, DE 19711 USA
[2] Univ Delaware, Dept Appl Econ & Stat, 531 S Coll Ave, Newark, DE 19711 USA
关键词
Integrative genomic analysis; sliced inverse regression; sufficient dimension reduction; MICRORNA EXPRESSION PROFILES; DIMENSION REDUCTION; GENE SELECTION; MESSENGER-RNA; VARIABLE SELECTION; CLASSIFICATION; MICROARRAY; MATRIX; MODEL; BREAST;
D O I
10.1515/sagmb-2018-0028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advancement in next-generation sequencing, transcriptomics, proteomics and other high-throughput technologies has enabled simultaneous measurement of multiple types of genomic data for cancer samples. These data together may reveal new biological insights as compared to analyzing one single genome type data. This study proposes a novel use of supervised dimension reduction method, called sliced inverse regression, to multi-omics data analysis to improve prediction over a single data type analysis. The study further proposes an integrative sliced inverse regression method (integrative SIR) for simultaneous analysis of multiple omics data types of cancer samples, including MiRNA, MRNA and proteomics, to achieve integrative dimension reduction and to further improve prediction performance. Numerical results show that integrative analysis of multi-omics data is beneficial as compared to single data source analysis, and more importantly, that supervised dimension reduction methods possess advantages in integrative data analysis in terms of classification and prediction as compared to unsupervised dimension reduction methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Integrative analysis of multi-omics data for liquid biopsy
    Chen, Geng
    Zhang, Jing
    Fu, Qiaoting
    Taly, Valerie
    Tan, Fei
    [J]. BRITISH JOURNAL OF CANCER, 2023, 128 (04) : 702 - 702
  • [2] Correction: Integrative analysis of multi-omics data for liquid biopsy
    Geng Chen
    Jing Zhang
    Qiaoting Fu
    Valerie Taly
    Fei Tan
    [J]. British Journal of Cancer, 2023, 128 : 702 - 702
  • [3] Dimension reduction techniques for the integrative analysis of multi-omics data
    Meng, Chen
    Zeleznik, Oana A.
    Thallinger, Gerhard G.
    Kuster, Bernhard
    Gholami, Amin M.
    Culhane, Aedin C.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) : 628 - 641
  • [4] Evaluation of integrative clustering methods for the analysis of multi-omics data
    Chauvel, Cecile
    Novoloaca, Alexei
    Veyre, Pierre
    Reynier, Frederic
    Becker, Jeremie
    [J]. BRIEFINGS IN BIOINFORMATICS, 2020, 21 (02) : 541 - 552
  • [5] Comparative analysis of integrative classification methods for multi-omics data
    Novoloaca, Alexei
    Broc, Camilo
    Beloeil, Laurent
    Yu, Wen-Han
    Becker, Jeremie
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [6] MODMatcher: Multi-Omics Data Matcher for Integrative Genomic Analysis
    Yoo, Seungyeul
    Huang, Tao
    Campbell, Joshua D.
    Lee, Eunjee
    Tu, Zhidong
    Geraci, Mark W.
    Powell, Charles A.
    Schadt, Eric E.
    Spira, Avrum
    Zhu, Jun
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
  • [7] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [8] A Customizable Analysis Flow in Integrative Multi-Omics
    Lancaster, Samuel M.
    Sanghi, Akshay
    Wu, Si
    Snyder, Michael P.
    [J]. BIOMOLECULES, 2020, 10 (12) : 1 - 15
  • [9] Integrative Sufficient Dimension Reduction Methods for Multi-Omics Data Analysis
    Jain, Yashita
    Ding, Shanshan
    [J]. ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 616 - 616
  • [10] A pan-cancer integrative pathway analysis of multi-omics data
    Henry Linder
    Yuping Zhang
    [J]. Quantitative Biology., 2020, 8 (02) - 142