Quantitative Analysis of Image Based LCD Motion De-Blurring Methods

被引:0
|
作者
Dolar, Carsten [1 ]
Schroeder, Hartmut [2 ]
机构
[1] Leibniz Univ Hannover, D-30167 Hannover, Germany
[2] Tech Univ Dortmund, D-44221 Dortmund, Germany
关键词
D O I
10.1109/ICCE.2011.5722793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the evaluation of motion compensated inverse filtering (MCIF) for LCD motion de-blurring. Using a novel analysis method, it can be shown that MCIF improves motion portrayal by a factor of almost two.
引用
收藏
页码:657 / +
页数:2
相关论文
共 50 条
  • [1] Nondestructive Image De-blurring Based on Diffraction Blurring Model
    Wei, Yangjie
    Du, Jieqiong
    Liu, Yongjun
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 1040 - 1045
  • [2] Improve Image De-blurring
    El Abbadi, Nidhal
    Al Taee, Elaf J.
    Abdulsamad, Zainalabideen
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN COMPUTER ENGINEERING (ITCE' 2018), 2018, : 25 - 30
  • [3] Metacontrast as a motion de-blurring device
    Becker, MW
    Anstis, SM
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 3432 - 3432
  • [4] Efficient Dark Channel Prior Based Blind Image De-blurring
    Ahmad, Jawad
    Touqir, Imran
    Siddiqui, Adil Masood
    RADIOENGINEERING, 2021, 30 (02) : 417 - 421
  • [5] Probability weighted moments regularization based blind image De-blurring
    Hussain Dawood
    Hassan Dawood
    Guo Ping
    Rashid Mehmood
    Ali Daud
    Abdullah Alamri
    Jalal S. Alowibdi
    Multimedia Tools and Applications, 2020, 79 : 4483 - 4498
  • [6] Probability weighted moments regularization based blind image De-blurring
    Dawood, Hussain
    Dawood, Hassan
    Guo, Ping
    Mehmood, Rashid
    Daud, Ali
    Alamri, Abdullah
    Alowibdi, Jalal S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (7-8) : 4483 - 4498
  • [7] Block Cluster Based Dictionary Learning for Image De-noising and De-blurring
    Zheng, JianWei
    Yang, Ping
    Fang, Shanshan
    Bai, Cong
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 818 - 826
  • [8] Intelligent Image De-Blurring for Imaging Flow Cytometry
    Zhang, Fangzheng
    Lei, Cheng
    Huang, Chun-Jung
    Kobayashi, Hirofumi
    Sun, Chia-Wei
    Goda, Keisuke
    CYTOMETRY PART A, 2019, 95A (05) : 549 - 554
  • [9] A Regularized Deep Learning Approach for Image De-Blurring
    Lo Conti, Francesco
    Minucci, Gabriele
    Derakhshan, Naser
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND MACHINE LEARNING (IML'17), 2017,
  • [10] Temporally Coded Illumination for Rolling Shutter Motion De-blurring
    McCloskey, Scott
    Venkatesha, Sharath
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1287 - 1295