ADAPTIVE POLYNOMIAL FILTERS WITH INDIVIDUAL LEARNING RATES FOR COMPUTATIONALLY EFFICIENT LUNG TUMOR MOTION PREDICTION

被引:0
|
作者
Cejnek, Matous [1 ]
Bukovsky, Ivo [1 ]
Homma, Noriyasu [2 ]
Liska, Ondrej [3 ]
机构
[1] Czech Tech Univ, ASPICC, Prague, Czech Republic
[2] Tohoku Univ, Grad Sch Med, Dept Radiol Imaging & Informat, Sendai, Miyagi, Japan
[3] Tech Univ Kosice, Kosice, Slovakia
关键词
Gradient Descent; Linear Neural Unit; Quadratic Neural Unit; Prediction; TRACKING;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a study of higher-order neural units as polynomial adaptive filters with multiple-learning-rate gradient descent for 3-D lung tumor motion prediction. The method is compared with single-learning rate gradient descent approaches with and without learning rate normalization. Experimental analysis is done with linear and quadratic neural unit. The influence of correct selection of adaptation parameters and the dependence of learning time on accuracy were experimentally analyzed. The prediction accuracy is nearly equal to recently published results of batch retraining approaches while the computational efficiency is higher for the introduced approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Computationally highly efficient mixture of adaptive filters
    O. Fatih Kilic
    M. Omer Sayin
    Ibrahim Delibalta
    Suleyman S. Kozat
    [J]. Signal, Image and Video Processing, 2017, 11 : 235 - 242
  • [2] Computationally highly efficient mixture of adaptive filters
    Kilic, O. Fatih
    Sayin, M. Omer
    Delibalta, Ibrahim
    Kozat, Suleyman S.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 235 - 242
  • [3] A computationally efficient algorithm for adaptive quadratic Volterra filters
    Li, XH
    Jenkins, WK
    Therrien, CW
    [J]. ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 2184 - 2187
  • [4] A Computationally Efficient Model for Pedestrian Motion Prediction
    Batkovic, Ivo
    Zanon, Mario
    Lubbe, Nils
    Falcone, Paolo
    [J]. 2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 375 - 380
  • [5] Computationally efficient algorithms for third order adaptive Volterra filters
    Li, XH
    Jenkins, WK
    Therrien, CW
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1405 - 1408
  • [6] An efficient method for the prediction of the motion of individual bubbles
    Emans, M
    Zenger, C
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2005, 19 (04) : 347 - 357
  • [7] Post-processing using computationally efficient adaptive nonlinear filters for HDTV
    Kim, Y
    Kirn, NH
    Huh, Y
    Ko, SJ
    Morales, AW
    [J]. ICCE: 2001 INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, DIGEST OF TECHNICAL PAPERS, 2001, : 176 - 177
  • [8] Adaptive Bezier Degree Reduction and Splitting for Computationally Efficient Motion Planning
    Arslan, Omur
    Tiemessen, Aron
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (06) : 3655 - 3674
  • [9] Prediction of Lung Tumor Motion With Measured Breathing Motion
    Tesfamicael, B.
    Lee, T.
    Keppel, C.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 84 (03): : S735 - S735
  • [10] Lung Tumor Motion and its Impact on Deep Learning Prediction of Local Recurrence
    Teo, P. T.
    Randall, J. W.
    Bajaj, A.
    Lou, B.
    Shah, J.
    Gopalakrishnan, M.
    Kamen, A.
    Das, I. J.
    Abazeed, M.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E126 - E126