Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing

被引:51
|
作者
Li, Vincent Chi-Fung [1 ,2 ]
Kuang, Xiao [3 ]
Hamel, Craig M. [1 ,3 ]
Roach, Devin [3 ]
Deng, Yulin [1 ,2 ]
Qi, H. Jerry [1 ,3 ]
机构
[1] Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Cellulose nanocrystals; Hybrid 3D printing; Direct-ink-write 3D printing; Inkjet 3D printing; MULTIMATERIAL; STEREOLITHOGRAPHY; ELASTOMER;
D O I
10.1016/j.addma.2019.04.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To fabricate highly complex structures, sacrificial support material is usually needed. However, traditional petroleum-based support materials are un-sustainable, non-recyclable, and difficult to be completely removed from the target structure after 3D processing. Instead, cellulose nanocrystals (CNC) gel could serves as an interesting 3D printing support material due to its sustainability, renewability, and potential recyclability. Since CNCs are highly dispersible in water as nanoparticles and are also not UV sensitive, it has less absorption or bondability with other UV curable polymer matrices. This allows them to be completely washed out by water, which offers a green and efficient method to remove the CNC support material during post processing. In addition, with increasing needs for more intricate structures, combining different 3D printing strategies into a hybrid 3D printing platform can be highly beneficial. In this work, a multi-materials-multi-methods (M-4) printer with dual direct-ink-write (DIW) and DIW-inkjet printing capability was used to fabricate various complex structures while using CNC as support material. After 3D printing, water was used to remove the CNC support structure. Even in a highly confined environment, such as the inside of a balloon structure, CNC support material was still easily removed. The potential of using sustainable CNC support material and M-4 hybrid 3D printing strategies to fabricate different complex structures was demonstrated. Since CNC gel is derived from forestry products and is entirely water based, the 3D printing process was also made more environmentally friendly, sustainable, and potentially recyclable.
引用
收藏
页码:14 / 22
页数:9
相关论文
共 50 条
  • [1] A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization
    Shaukat, Usman
    Rossegger, Elisabeth
    Schloegl, Sandra
    POLYMERS, 2022, 14 (12)
  • [2] 3D printing of cellulose nanocrystals and nanocomposites
    Siqueira, Gilberto
    Kokkinis, Dimitri
    Libanori, Rafael
    Hausmann, Michael
    Gladman, Sydney
    Neels, Antonia
    Tingaut, Philippe
    Zimmermann, Tanja
    Lewis, Jennifer
    Studart, Andre R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [3] 3D printing with cellulose materials
    Qianqian Wang
    Jianzhong Sun
    Qian Yao
    Chencheng Ji
    Jun Liu
    Qianqian Zhu
    Cellulose, 2018, 25 : 4275 - 4301
  • [4] 3D printing with cellulose materials
    Wang, Qianqian
    Sun, Jianzhong
    Yao, Qian
    Ji, Chencheng
    Liu, Jun
    Zhu, Qianqian
    CELLULOSE, 2018, 25 (08) : 4275 - 4301
  • [5] Multi-material and Multi-dimensional 3D Printing for Biomedical Materials and Devices
    Jia An
    Kah Fai Leong
    Biomedical Materials & Devices, 2023, 1 (1): : 38 - 48
  • [6] Ceramics and multi-material 3D printing
    Keramik und Multi-Material 3D-Druck
    Kollenberg, W. (w.kollenberg@wzr.cc), 1600, DVS Verlag (66):
  • [7] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Ziqi Gao
    Jun Yin
    Peng Liu
    Qi Li
    Runan Zhang
    Huayong Yang
    Hongzhao Zhou
    International Journal of Extreme Manufacturing, 2023, 5 (03) : 491 - 504
  • [8] A review on polyjet 3D printing of polymers and multi-material structures
    Patpatiya, Parth
    Chaudhary, Kailash
    Shastri, Anshuman
    Sharma, Shailly
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (14) : 7899 - 7926
  • [9] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Gao, Ziqi
    Yin, Jun
    Liu, Peng
    Li, Qi
    Zhang, Runan
    Yang, Huayong
    Zhou, Hongzhao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (03)
  • [10] Magnetic properties of ferromagnetic materials produced by 3D multi-material printing
    Trnka, Nikolaus
    Rudolph, Johannes
    Werner, Ralf
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 326 - 331