POINT COMPRESSION FOR KOBLITZ ELLIPTIC CURVES

被引:4
|
作者
Eagle, Philip N. J. [1 ]
Galbraith, Steven D. [2 ]
Ong, John B. [2 ]
机构
[1] Royal Holloway Univ London, Dept Math, Informat Secur Grp, Egham TW20 0EX, Surrey, England
[2] Univ Auckland, Dept Math, Auckland 1142, New Zealand
基金
英国工程与自然科学研究理事会;
关键词
Elliptic curve cryptography; Koblitz curves; point compression; SEARCH;
D O I
10.3934/amc.2011.5.1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is an elliptic curve E over F-2; the group E (F-2n) has convenient features for efficient implementation of elliptic curve cryptography. Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard rho algorithm for the discrete logarithm problem on Koblitz curves. This implies that when using Koblitz curves,one has a lower security per bit than when using general elliptic curves defined over the same field. Hence for a fixed security level, systems using Koblitz curves require slightly more bandwidth. We present a method to reduce this band width when a normal basis representation for F(2)n is used. Our method is appropriate for applications such as Diffie-Hellman key exchange or Elgamal encryption. We show that, with a low probability of failure,our method gives the expected bandwidth for a given security level.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Multiple point compression on elliptic curves
    Fan, Xinxin
    Otemissov, Adilet
    Sica, Francesco
    Sidorenko, Andrey
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (03) : 565 - 588
  • [2] Multiple point compression on elliptic curves
    Xinxin Fan
    Adilet Otemissov
    Francesco Sica
    Andrey Sidorenko
    Designs, Codes and Cryptography, 2017, 83 : 565 - 588
  • [3] Elliptic Net Scalar Multiplication upon Koblitz Curves
    Muslim, N.
    Yunos, F.
    Razali, Z.
    Said, M. R. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 373 - 388
  • [4] Hybrid Differential Evolutionary Algorithms for Koblitz Elliptic Curves Generating
    Ku, Junhua
    Cai, Zhihua
    Yang, Xiuying
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING, 2014, 113 : 714 - 717
  • [5] Very efficient point multiplication on Koblitz curves
    Al-Somani, Turki F.
    IEICE ELECTRONICS EXPRESS, 2016, 13 (09):
  • [6] Design of Elliptic Curve Cryptoprocessors over GF(2163) on Koblitz Curves
    Realpe-Munoz, Paulo
    Trujillo-Olaya, Vladimir
    Velasco-Medina, Jaime
    2014 IEEE 5TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2014,
  • [7] High performance scalable elliptic curve cryptosystem processor for Koblitz curves
    Loi, K. C. Cinnati
    Ko, Seok-Bum
    MICROPROCESSORS AND MICROSYSTEMS, 2013, 37 (4-5) : 394 - 406
  • [8] High-performance elliptic curve cryptoprocessors over on Koblitz curves
    Realpe-Munoz, Paulo C.
    Velasco-Medina, Jaime
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2015, 85 (01) : 129 - 138
  • [9] Determining Formulas Related to Point Compression on Alternative Models of Elliptic Curves
    Drylo, Robert
    Kijko, Tomasz
    Wronski, Michal
    FUNDAMENTA INFORMATICAE, 2019, 169 (04) : 285 - 294
  • [10] High-Speed Elliptic Curve Cryptography Accelerator for Koblitz Curves
    Jarvinen, Kimmo U.
    Skytta, Jorma O.
    PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 109 - 118