Robust control of quantum dynamics under input and parameter uncertainty

被引:7
|
作者
Koswara, Andrew [1 ]
Bhutoria, Vaibhav [1 ]
Chakrabarti, Raj [1 ,2 ]
机构
[1] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Chakrabarti Adv Technol LLC, Div Fundamental Res, Mt Laurel, NJ 08054 USA
关键词
POPULATION TRANSFER; DISSOCIATION; GAS;
D O I
10.1103/PhysRevA.104.053118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Despite significant progress in theoretical and laboratory quantum control, engineering quantum systems remains principally challenging due to manifestation of noise and uncertainties associated with the field and Hamiltonian parameters. In this paper, we extend and generalize the asymptotic quantum control robustness analysis method, which provides more accurate estimates of quantum control objective moments than standard leading-order techniques, to diverse quantum observables, gates, and moments thereof and also introduce the Pontryagin maximum principle for quantum robust control. In addition, we present a Pareto optimization framework for achieving robust control via evolutionary open-loop (model-based) and closed-loop (model-free) approaches with the mechanisms of robustness and convergence described using asymptotic quantum control robustness analysis. In the open-loop approach, a multiobjective genetic algorithm is used to obtain Pareto solutions in terms of the expectation and variance of the transition probability under Hamiltonian parameter uncertainty. The set of numerically determined solutions can then be used as a starting population for model-free learning control in a feedback loop. The closed-loop approach utilizes a real-coded genetic algorithm with adaptive exploration and exploitation operators in order to preserve solution diversity and dynamically optimize the transition probability in the presence of field noise. Together, these methods provide a foundation for high-fidelity adaptive feedback control of quantum systems wherein open-loop control predictions are iteratively improved based on data from closed-loop experiments.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Stability under parameter uncertainty: Robust control
    Choudhury, DR
    [J]. 8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XI, PROCEEDINGS: CONTROL, COMMUNICATION AND NETWORK SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 214 - 218
  • [2] Robust control of feedback linearizable system with the parameter uncertainty and input constraint
    Son, WK
    Choi, JY
    Kwon, OK
    [J]. SICE 2001: PROCEEDINGS OF THE 40TH SICE ANNUAL CONFERENCE, INTERNATIONAL SESSION PAPERS, 2001, : 407 - 411
  • [3] ROBUST LQG CONTROL-SYSTEM UNDER PARAMETER UNCERTAINTY
    MAKI, M
    HAGINO, K
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1994, 77 (07): : 48 - 57
  • [4] Robust Adaptive Fuzzy Control for HFV With Parameter Uncertainty and Unmodeled Dynamics
    Hu, Xiaoxiang
    Xu, Bin
    Hu, Changhua
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (11) : 8851 - 8860
  • [5] Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation
    Namdari, Hasan
    Allahverdizadeh, Firouz
    Sharifi, Alireza
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2020, 234 (02) : 143 - 155
  • [6] ROBUST-CONTROL DESIGN WITH REAL-PARAMETER UNCERTAINTY AND UNMODELED DYNAMICS
    YEH, HH
    BANDA, SS
    HEISE, SA
    BARTLETT, AC
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1990, 13 (06) : 1117 - 1125
  • [7] Collaborative parameter robust optimization under uncertainty
    Wang, Wei-Ming
    Hu, Jie
    Peng, Ying-Hong
    Cao, Zhao-Min
    [J]. 2008, Shanghai Jiao Tong University (42):
  • [8] Criterion of robust stability with definite attendance for parameter uncertainty delay systems in state and control input
    Liu Mengliang
    Liu Xiaohua
    [J]. Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 615 - 617
  • [9] Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
    Guzman, Rel
    Oliveira, Rafael
    Ramos, Fabio
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5539 - 5545
  • [10] A SUBSET SELECTION PROCEDURE UNDER INPUT PARAMETER UNCERTAINTY
    Corlu, Canan G.
    Biller, Bahar
    [J]. 2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 463 - +