Potentiometric Sensor Arrays for the Individual Determination of Penicillin Class Antibiotics Using Artificial Neural Networks

被引:13
|
作者
Kulapina, E. G. [1 ]
Snesarev, S. V. [1 ]
Makarova, N. M. [1 ]
Pogorelova, E. S. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Inst Chem, Saratov 410012, Russia
关键词
potentiometric sensors; penicillin class antibiotics; multisensor systems; artificial neural networks; ION-SELECTIVE ELECTRODES; BETA-LACTAM ANTIBIOTICS; SEPARATE DETERMINATION; SODIUM;
D O I
10.1134/S1061934811010084
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Arrays of potentiometric sensors with plasticized polymer membranes based on tetraalkylammonium organic ion exchanges with anions of penicillin class antibiotics (benzylpenicillin, ampicillin, oxacillin, and amoxicillin) have been proposed for the individual determination of antibiotics in model mixtures and pharmaceutical preparations. The following cross-sensitivity parameters of sensors have been estimated: the average slope of the electrode function (54 < S-av < 61), the nonselectivity factor (2.8 < F < 74.6), and the reproducibility factor (31.9 < K < 61.2). Artificial neural networks have been applied to the treatment of analytical signals from the multisensor system in the concentration range 2.5 x 10(-4)-1 x 10(-1) M. The average error of the individual determination of penicillin class antibiotics is 5-7%.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 50 条
  • [1] Potentiometric sensor arrays for the individual determination of penicillin class antibiotics using artificial neural networks
    E. G. Kulapina
    S. V. Snesarev
    N. M. Makarova
    E. S. Pogorelova
    [J]. Journal of Analytical Chemistry, 2011, 66 : 78 - 83
  • [2] ARTIFICIAL NEURAL NETWORKS AND GAS SENSOR ARRAYS - QUANTIFICATION OF INDIVIDUAL COMPONENTS IN A GAS-MIXTURE
    SUNDGREN, H
    WINQUIST, F
    LUKKARI, I
    LUNDSTROM, I
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1991, 2 (05) : 464 - 469
  • [3] Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks
    Tang, Lin
    Zeng, Guangming
    Liu, Jianxiao
    Xu, Xiangmin
    Zhang, Yi
    Shen, Guoli
    Li, Yuanping
    Liu, Can
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 391 (02) : 679 - 685
  • [4] Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks
    Lin Tang
    Guangming Zeng
    Jianxiao Liu
    Xiangmin Xu
    Yi Zhang
    Guoli Shen
    Yuanping Li
    Can Liu
    [J]. Analytical and Bioanalytical Chemistry, 2008, 391 : 679 - 685
  • [5] Determination of concentrations at hydrolytic potentiometric titrations with models made by artificial neural networks
    Brodnjak-Voncina, D
    Dobcnik, D
    Novic, M
    Zupan, J
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 47 (01) : 79 - 88
  • [6] Calibration of a Potentiometric Multi-Sensor Array for the Determination of Na+, K+ and NH4+ Ions by Using Artificial Neural Networks
    Coldur, Fatih
    Andac, Muberra
    [J]. ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (09) : 3859 - 3864
  • [7] Control Sensor Linearization Using Artificial Neural Networks
    G. L. Dempsey
    J. S. Alig
    N. L. Alt
    B. A. Olson
    D. E. Redfield
    [J]. Analog Integrated Circuits and Signal Processing, 1997, 13 : 321 - 332
  • [8] Soft sensor modeling using artificial neural networks
    Nandakumar, V.
    [J]. HYDROCARBON PROCESSING, 2009, 88 (03): : 39 - 43
  • [9] Control sensor linearization using artificial neural networks
    Dempsey, GL
    Alig, JS
    Alt, NL
    Olson, BA
    Redfield, DE
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 1997, 13 (03) : 321 - 332
  • [10] Determination of Sulfacetamide in Blood and Urine Using PBS Quantum Dots Sensor and Artificial Neural Networks
    Shahnaz Davoudi
    Farzaneh Marahel
    [J]. Journal of Analytical Chemistry, 2022, 77 : 1448 - 1457