LIMIT LINEAR SERIES ON CHAINS OF ELLIPTIC CURVES AND TROPICAL DIVISORS ON CHAINS OF LOOPS

被引:0
|
作者
Martin, Alberto Lopez [1 ]
Teixidor i Bigas, Montserrat [2 ]
机构
[1] Inst Matematica Pura & Aplicada, Estrada Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Tufts Univ, Dept Math, 503 Boston Ave, Medford, MA 02155 USA
来源
DOCUMENTA MATHEMATICA | 2017年 / 22卷
关键词
CANONICAL DETERMINANT; VECTOR-BUNDLES; EXISTENCE; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the space of Eisenbud-Harris limit linear series on a chain of elliptic curves and compare it with the theory of divisors on tropical chains. Either model allows to compute some invariants of Brill-Noether theory using combinatorial methods. We introduce effective limit linear series.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 26 条
  • [1] Double-Base Chains for Scalar Multiplications on Elliptic Curves
    Yu, Wei
    Al Musa, Saud
    Li, Bao
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 538 - 565
  • [2] Approaching the quantum limit for plasmonics: linear atomic chains
    Bryant, Garnett W.
    [J]. JOURNAL OF OPTICS, 2016, 18 (07)
  • [3] Limit linear series for curves not of compact type
    Osserman, Brian
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 57 - 88
  • [4] Families of SNARK-Friendly 2-Chains of Elliptic Curves
    El Housni, Youssef
    Guillevic, Aurore
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT II, 2022, 13276 : 367 - 396
  • [5] Limit relation between toda chains and the elliptic SL(N, ℂ) top
    G. A. Aminov
    [J]. Theoretical and Mathematical Physics, 2012, 171 : 575 - 588
  • [6] Limit relation between toda chains and the elliptic SL(N,C) top
    Aminov, G. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (02) : 575 - 588
  • [7] Dimension counts for limit linear series on curves not of compact type
    Osserman, Brian
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) : 69 - 93
  • [8] Dimension counts for limit linear series on curves not of compact type
    Brian Osserman
    [J]. Mathematische Zeitschrift, 2016, 284 : 69 - 93
  • [9] Elliptic tori in FPU non-linear chains with a small number of nodes
    Caracciolo, Chiara
    Locatelli, Ugo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 97
  • [10] Linear series on a curve of compact type bridged by a chain of elliptic curves
    Choi, Youngook
    Kim, Seonja
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (04): : 844 - 860