Constant-norm scrambled sets for hypercyclic operators

被引:4
|
作者
Moothathu, T. K. Subrahmonian [1 ]
机构
[1] Univ Hyderabad, Dept Math & Stat, Hyderabad 500046, Andhra Pradesh, India
关键词
Hypercyclic operator; Scrambled set; INVARIANT-MANIFOLDS; VECTORS; CHAOS;
D O I
10.1016/j.jmaa.2011.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T : X -> X be a hypercyclic operator of a Banach space X, let D(T) = {x e X: x has a dense T-orbit). and let X(r) = {x is an element of X: vertical bar vertical bar x vertical bar vertical bar = r} for r > 0. We show that there is a linearly independent subset S c D(T) with the following properties: (i) for any r > 0, and any nonempty, relatively open subset U of X(r), the intersection S boolean AND U is uncountable, (ii) S S c D(T) U (0); and in particular, lim inf(n ->infinity)) vertical bar vertical bar T(n)a - T(n)b vertical bar vertical bar = 0 and limsu(pn ->infinity)vertical bar vertical bar T(n)a - T(n)b vertical bar vertical bar = infinity for any two distinct a, b is an element of S. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1219 / 1220
页数:2
相关论文
共 50 条
  • [1] Residuality of Sets of Hypercyclic Operators
    Rodriguez-Martinez, Alejandro
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 72 (03) : 301 - 308
  • [2] Residuality of Sets of Hypercyclic Operators
    Alejandro Rodríguez-Martínez
    [J]. Integral Equations and Operator Theory, 2012, 72 : 301 - 308
  • [3] Scrambled sets of shift operators
    Wu, Xinxing
    Chen, Guanrong
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2631 - 2637
  • [4] Algebrable sets of hypercyclic vectors for convolution operators
    Bes, Juan
    Papathanasiou, Dimitris
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 91 - 119
  • [5] Algebrable sets of hypercyclic vectors for convolution operators
    Juan Bès
    Dimitris Papathanasiou
    [J]. Israel Journal of Mathematics, 2020, 238 : 91 - 119
  • [6] Distributional chaos for operators with full scrambled sets
    Félix Martínez-Giménez
    Piotr Oprocha
    Alfredo Peris
    [J]. Mathematische Zeitschrift, 2013, 274 : 603 - 612
  • [7] Distributional chaos for operators with full scrambled sets
    Martinez-Gimenez, Felix
    Oprocha, Piotr
    Peris, Alfredo
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 603 - 612
  • [8] THE SPATIAL-DISTRIBUTION OF ALGEBRAIC-INTEGERS ON CONSTANT-NORM HYPERSURFACES
    ODONI, RWK
    [J]. MATHEMATIKA, 1992, 39 (78) : 350 - 366
  • [9] Hypercyclic algebras for convolution operators of unimodular constant term
    Bes, J.
    Ernst, R.
    Prieto, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
  • [10] A weakly hypercyclic operator that is not norm hypercyclic
    Chan, KC
    Sanders, R
    [J]. JOURNAL OF OPERATOR THEORY, 2004, 52 (01) : 39 - 59