Stock return autocorrelations revisited: A quantile regression approach

被引:104
|
作者
Baur, Dirk G. [2 ]
Dimpfl, Thomas [1 ]
Jung, Robert C. [3 ]
机构
[1] Univ Tubingen, Wirtschafts & Sozialwissensch Fak, D-72074 Tubingen, Germany
[2] Univ Technol Sydney, Sydney, NSW 2007, Australia
[3] Univ Erfurt, Staatswissensch Fak, D-99105 Erfurt, Germany
关键词
Stock return distribution; Quantile autoregression; Overreaction and underreaction; VOLUME;
D O I
10.1016/j.jempfin.2011.12.002
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework Our empirical results are based on 30 years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:254 / 265
页数:12
相关论文
共 50 条
  • [1] Monetary environments and stock returns revisited: A quantile regression approach
    Chevapatrakul, Thanaset
    [J]. ECONOMICS LETTERS, 2014, 123 (02) : 122 - 126
  • [2] Return autocorrelations in the stock markets
    Chen, Chun-Da
    [J]. APPLIED ECONOMICS LETTERS, 2009, 16 (09) : 907 - 911
  • [3] Stock return autocorrelations and predictability in the Chinese stock market-Evidence from threshold quantile autoregressive models
    Xue, Wen-Jun
    Zhang, Li-Wen
    [J]. ECONOMIC MODELLING, 2017, 60 : 391 - 401
  • [4] Quantile Regression for Risk-Return Relations in Shanghai Stock Market
    Liu, Weixia
    Lin, Yong
    Zhang Jianmin
    [J]. THIRD INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND OPTIMIZATION (CMSO 2010), 2010, : 42 - 45
  • [5] Criminal Specialization Revisited: A Simultaneous Quantile Regression Approach
    DeLisi M.
    Beaver K.M.
    Wright K.A.
    Wright J.P.
    Vaughn M.G.
    Trulson C.R.
    [J]. American Journal of Criminal Justice, 2011, 36 (2) : 73 - 92
  • [6] The prospect theory and the idiosyncratic risk-return linkage: a quantile regression approach for Vietnam's stock market
    Bao, Ho Hoang Gia
    Tran, Thi Hai Ly
    Dinh, Thi Thu Hong
    [J]. MANAGERIAL FINANCE, 2024, 50 (08) : 1533 - 1553
  • [7] Return Forecasting by Quantile Regression
    Pohlman, Lawrence
    Ma, Lingjie
    [J]. JOURNAL OF INVESTING, 2010, 19 (04): : 116 - 121
  • [8] Asymmetric information and stock return cross-autocorrelations
    Bernhardt, Dan
    Mahani, Reza S.
    [J]. ECONOMICS LETTERS, 2007, 96 (01) : 14 - 22
  • [9] Empirical evidence of feedback trading and stock return autocorrelations
    Tang, Y.
    Zeng, Y.
    Tang, X.W.
    [J]. Dianzi Keji Daxue Xuebao/Journal of University of Electronic Science and Technology of China, 2001, 30 (03):
  • [10] Spatiotemporal modeling of hydrological return levels: A quantile regression approach
    Franco-Villoria, Maria
    Scott, Marian
    Hoey, Trevor
    [J]. ENVIRONMETRICS, 2019, 30 (02)