Uniqueness of Bounded Solutions for the Homogeneous Landau Equation with a Coulomb Potential

被引:37
|
作者
Fournier, Nicolas [1 ]
机构
[1] Univ Paris Est, Fac Sci & Technol, LAMA UMR 8050, F-94010 Creteil, France
关键词
BOLTZMANN-EQUATION; MAXWELLIAN MOLECULES; ANGULAR SINGULARITY; SOFT POTENTIALS; WELL-POSEDNESS; APPROXIMATION;
D O I
10.1007/s00220-010-1113-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the uniqueness of bounded solutions for the spatially homogeneous Fokker-Planck-Landau equation with a Coulomb potential. Since the local (in time) existence of such solutions has been proved by Arsen'ev-Peskov (Z. Vycisl. Mat. i Mat. Fiz. 17:1063-1068, 1977), we deduce a local well-posedness result. The stability with respect to the initial condition is also checked.
引用
收藏
页码:765 / 782
页数:18
相关论文
共 50 条