Finite-time global chaos synchronization for piecewise linear maps

被引:28
|
作者
Millerioux, G [1 ]
Mira, C
机构
[1] Ecole Super Sci & Technol Ingn, Ctr Rech Automat Nancy, F-54500 Vandoeuvre Les Nancy, France
[2] MIDIVAL, Toulouse, France
关键词
chaos synchronization; finite-time; linear matrix inequalities; maps;
D O I
10.1109/81.903194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, sufficient conditions of global synchronization in finite-time, which can be minimum, are presented for the generic class of piecewise linear maps. The conditions of synchronization are based upon general results of the robust control theory, the observability theory, and the specificity of the chaotic motion generated by the map. The robust control theory results enable global synchronization with disturbances cancellation. Observability and assignment of eigenvalues ensure finite-time synchronization. A systematic methodology for designing a global finite-time synchronization derived from those conditions is presented. From a practical point of view, this only requires classical numerical solvers. finite-time global synchronization can be of interest for applications such as digital communications.
引用
下载
收藏
页码:111 / 116
页数:6
相关论文
共 50 条
  • [1] Chaos synchronization in a lattice of piecewise linear maps with regular and random couplings
    dos Santos, A. M.
    Viana, R. L.
    Lopes, S. R.
    Pinto, S. E. de S.
    Batista, A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 : 145 - 157
  • [2] Different types of chaos synchronization in two coupled piecewise linear maps
    Maistrenko, Y
    Kapitaniak, T
    PHYSICAL REVIEW E, 1996, 54 (04) : 3285 - 3292
  • [3] Noninvertible piecewise linear maps applied to chaos synchronization and secure communications
    Millerioux, G
    Mira, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1617 - 1634
  • [4] Finite-Time Stability Analysis for Piecewise Linear Systems
    BenKhaled, Sana
    Delattre, Cedric
    Bhiri, Bessem
    Zasadzinski, Michel
    Abderrahim, Kamel
    2022 10TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2022, : 239 - 243
  • [5] Piecewise linear maps with heterogeneous chaos
    Saiki, Yoshitaka
    Takahasi, Hiroki
    Yorke, James A.
    NONLINEARITY, 2021, 34 (08) : 5744 - 5761
  • [6] FINITE-TIME CHAOS SYNCHRONIZATION OF A NEW HYPERCHAOTIC LORENZ SYSTEM
    Wang, Xingyuan
    Gao, Xulong
    Wang, Lulu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (09):
  • [7] Finite-time H∞ control of periodic piecewise linear systems
    Xie, Xiaochen
    Lam, James
    Li, Panshuo
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (11) : 2333 - 2344
  • [8] Global finite-time chaos synchronization between the Loren system and the Chen system via a simple controller
    Chen Yun
    Zhou Dawei
    Li Shilei
    Zhang Xiyong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 469 - 472
  • [9] Finite-time chaos synchronization of unified chaotic system with uncertain parameters
    Wang, Hua
    Han, Zheng-zhi
    Xie, Qi-yue
    Zhang, Wei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 2239 - 2247
  • [10] Chaos synchronization of gyroscopes using an adaptive robust finite-time controller
    Aghababa, Mohammad Pourmahmood
    Aghababa, Hasan Pourmahmood
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (03) : 909 - 916