On the Completion of Fuzzy Normed Linear Spaces in the Sense of Bag and Samanta

被引:0
|
作者
Yan, Conghua [1 ]
机构
[1] Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing, Peoples R China
关键词
Fuzzy metric spaces; fuzzy normed linear space; Cauchy fuzzy point sequence; uniformly dense in every stratum; completion;
D O I
10.1080/16168658.2021.1943876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the completion of fuzzy normed linear space (in the sense of Bag and Samanta) is studied. First, some properties of convergence fuzzy point sequences are discussed. Specially, we give another characterisation of Q-neighbourhood base of theta(lambda) (lambda is an element of (0,1]) for I-topology introduced by Saheli. Then we show that each fuzzy normed linear space has an (up to isomorphism) unique complete fuzzy normed linear space which contains an uniformly dense in every stratum subspace isomorphic to it.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [1] COMPLETION OF NORMED LINEAR SPACES
    YANG, KW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (04) : 801 - &
  • [2] THE COMPLETION OF A FUZZY NORMED LINEAR-SPACE
    CLEMENTINA, F
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (02) : 428 - 440
  • [3] Fuzzy Normed Linear Spaces and Fuzzy Frames
    Daraby, B.
    Delzendeh, F.
    Rostami, A.
    Rahimi, A.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2019, 9 (02): : 62 - 87
  • [4] Completions of fuzzy metric spaces and fuzzy normed linear spaces
    Lee, Byung-Soo
    Lee, Suk-Jin
    Park, Kyung-Mi
    [J]. Fuzzy Sets and Systems, 106 (03): : 469 - 473
  • [5] The completions of fuzzy metric spaces and fuzzy normed linear spaces
    Lee, BS
    Lee, SJ
    Park, KM
    [J]. FUZZY SETS AND SYSTEMS, 1999, 106 (03) : 469 - 473
  • [7] Fuzzy Normed Linear Spaces Generated By Linear Functionals
    Khoddami, Ali Reza
    Kouhsari, Fatemeh
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03):
  • [8] λ - statistical convergence in fuzzy normed linear spaces
    Turkmen, Muhammed Recai
    Cinar, Muhammed
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 4023 - 4030
  • [9] A Study of Boundedness in Fuzzy Normed Linear Spaces
    Binzar, Tudor
    Pater, Flavius
    Nadaban, Sorin
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [10] SEPARATION OF FUZZY NORMED LINEAR-SPACES
    KRISHNA, SV
    SARMA, KKM
    [J]. FUZZY SETS AND SYSTEMS, 1994, 63 (02) : 207 - 217