Discrimination and analysis of phytoplankton using a microfluidic cytometer

被引:57
|
作者
Benazzi, G. [1 ]
Holmes, D. [1 ]
Sun, T. [1 ]
Mowlem, M. C. [2 ]
Morgan, H. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Engn, Southampton, Hants, England
[2] Natl Oceanog Ctr, Natl Marine Facil, Southampton, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1049/iet-nbt:20070020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identification and analysis of phytoplankton is important for understanding the environmental parameters that are influenced by the oceans, including pollution and climate change. Phytoplanktons are studied at the single cell level using conventional light-field and fluorescence microscopy, but the technique is labour intensive. Flow cytometry enables rapid and quantitative measurements of single cells and is now used as an analytical tool in phytoplankton analysis. However, it has a number of drawbacks, including high cost and portability. We describe the fabrication of a microfluidic (lab-on-a-chip) device for high-speed analysis of single phytoplankton. The device measures fluorescence (at three wavelength ranges) and the electrical impedance of single particles. The system was tested using a mixture of three, algae (Isochrysis Galbana, Rhodosorus m., Synechococcus sp.) and the results compared with predictions from theory and measurements using a commercial flow cytometer (131) FACSAria). It is shown that the microfluidic flow cytometer is able to distinguish and characterise these different taxa and that impedance spectroscopy enables measurement of phytoplankton biophysical properties.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [1] A microflow cytometer for optical analysis of phytoplankton
    Golden, Joel P.
    Hashemi, Nastaran
    Erickson, Jeffrey S.
    Ligler, Frances S.
    FRONTIERS IN BIOLOGICAL DETECTION: FROM NANOSENSORS TO SYSTEMS IV, 2012, 8212
  • [2] Microflow Cytometer for optical analysis of phytoplankton
    Hashemi, Nastaran
    Erickson, Jeffrey S.
    Golden, Joel P.
    Jackson, Kirsten M.
    Ligler, Frances S.
    BIOSENSORS & BIOELECTRONICS, 2011, 26 (11): : 4263 - 4269
  • [3] Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton
    Xiong, Bo
    Hong, Tianqi
    Schellhorn, Herbert
    Fang, Qiyin
    PHOTONICS, 2021, 8 (10)
  • [4] Microfluidic impedance cytometer for platelet analysis
    Evander, Mikael
    Ricco, Antonio J.
    Morser, John
    Kovacs, Gregory T. A.
    Leung, Lawrence L. K.
    Giovangrandi, Laurent
    LAB ON A CHIP, 2013, 13 (04) : 722 - 729
  • [5] Fabrication of Microfluidic Impedance Cytometer for Leukocytes Analysis
    Subramaniam, Sasikala
    Ahmed, Usama
    Benerjee, Subham
    Jain, Prakhar
    Chowdhury, P.
    2019 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2019, : 829 - 832
  • [6] A microfluidic cytometer for white blood cell analysis
    Peng, Tao
    Su, Xinyue
    Cheng, Xingzhi
    Wei, Zewen
    Su, Xuantao
    Li, Qin
    CYTOMETRY PART A, 2021, 99 (11) : 1107 - 1113
  • [7] A reliable elasticity sensing method for analysis of cell entosis using microfluidic cytometer
    Ren J.
    Fan L.
    Biomedical Engineering Letters, 2023, 13 (02) : 175 - 183
  • [8] A fast fluorescence imaging flow cytometer for phytoplankton analysis
    Wu, Jianglai
    Chan, Robert K. Y.
    OPTICS EXPRESS, 2013, 21 (20): : 23921 - 23926
  • [9] Portable Microfluidic Cytometer for Whole Blood Cell Analysis
    Grafton, Meggie M.
    Zordan, Michael D.
    Chuang, Han-Sheng
    Rajdev, Pooja
    Reece, Lisa M.
    Irazoqui, Pedro P.
    Wereley, Steven T.
    Byrnes, Ron
    Todd, Paul
    Leary, James F.
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS VIII, 2010, 7593
  • [10] Sizing biological cells using a microfluidic acoustic flow cytometer
    Strohm, Eric M.
    Gnyawali, Vaskar
    Sebastian, Joseph A.
    Ngunjiri, Robert
    Moore, Michael J.
    Tsai, Scott S. H.
    Kolios, Michael C.
    SCIENTIFIC REPORTS, 2019, 9 (1)