Octahedral extensions with a given cubic subfield

被引:0
|
作者
Childers, Kevin [1 ]
Doud, Darrin [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84115 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84605 USA
关键词
Octahedral extensions;
D O I
10.1016/j.jnt.2016.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K/Q be a non-Galois cubic extension with vertical bar d(K)vertical bar I a power of a prime p. We prove a conjecture of Wong, namely that the number of S-4-extensions of Q containing K and having discriminant a power of p is of the form 2(n) - 1 for some nonnegative n is an element of Z, and that n is positive if K is totally real. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条