Efficient empirical-likelihood-based inferences for the single-index model

被引:10
|
作者
Huang, Zhensheng [1 ]
Zhang, Riquan [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] E China Normal Univ, Dept Stat, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Confidence interval; Link function; Profile empirical likelihood; Single-index model; Single parameter; CONFIDENCE-REGIONS;
D O I
10.1016/j.jmva.2011.01.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes the efficient empirical-likelihood-based inferences for the single component of the parameter and the link function in the single-index model. Unlike the existing empirical likelihood procedures for the single-index model, the proposed profile empirical likelihood for the parameter is constructed by using some components of the maximum empirical likelihood estimator (MELE) based on a semiparametric efficient score. The empirical-likelihood-based inference for the link function is also considered. The resulting statistics are proved to follow a standard chi-squared limiting distribution. Simulation studies are undertaken to assess the finite sample performance of the proposed confidence intervals. An application to real data set is illustrated. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:937 / 947
页数:11
相关论文
共 50 条