Antitrace maps and light transmission coefficients for generalized Fibonacci multilayers

被引:15
|
作者
Wang, XG [1 ]
Pan, SH [1 ]
Yang, GZ [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Lab Opt Phys, Beijing 100080, Peoples R China
来源
CHINESE PHYSICS LETTERS | 2001年 / 18卷 / 01期
关键词
D O I
10.1088/0256-307X/18/1/328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the antitrace map method, we investigate the light transmission for generalized Fibonacci multilayers. Analytical results are obtained for transmission coefficients in some special cases. We find that the transmission coefficients possess a two-cycle or six-cycle property. The cycle properties of the trace and antitrace are also obtained.
引用
收藏
页码:80 / 81
页数:2
相关论文
共 50 条
  • [1] Polarized light transmission through generalized Fibonacci multilayers: I. Dynamical maps approach
    Klauzer-Kruszyna, A
    Salejda, W
    Tyc, MH
    OPTIK, 2004, 115 (06): : 257 - 266
  • [2] Perfect light transmission in Fibonacci arrays of dielectric multilayers
    Nava, R.
    Taguena-Martinez, J.
    del Rio, J. A.
    Naumis, G. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (15)
  • [3] Polarized light transmission through generalized Fibonacci multilayers. II. Numerical results
    Klauzer-Kruszyna, A
    Salejda, W
    Tyc, MH
    OPTIK, 2004, 115 (06): : 267 - 276
  • [4] Light transmission through symmetric Fibonacci-class multilayers
    Wang, Yong
    Huang, Xiu-Qing
    Gong, Chang-De
    2000, IOP Publishing Ltd (17):
  • [5] Light transmission through symmetric Fibonacci-class multilayers
    Wang, Y
    Huang, XQ
    Gong, CD
    CHINESE PHYSICS LETTERS, 2000, 17 (07) : 498 - 500
  • [6] Transmission properties of light through the Fibonacci-class multilayers
    Yang, XB
    Liu, YY
    Fu, XJ
    PHYSICAL REVIEW B, 1999, 59 (07): : 4545 - 4548
  • [7] Optical transmission through generalized third-order Fibonacci multilayers
    Hu, Xubo
    Yang, Xiangbo
    Liu, Songhao
    MODERN PHYSICS LETTERS B, 2014, 28 (16):
  • [8] Generalized Fibonacci Polynomials and Fibonomial Coefficients
    Amdeberhan, Tewodros
    Chen, Xi
    Moll, Victor H.
    Sagan, Bruce E.
    ANNALS OF COMBINATORICS, 2014, 18 (04) : 541 - 562
  • [9] Generalized Fibonacci Polynomials and Fibonomial Coefficients
    Tewodros Amdeberhan
    Xi Chen
    Victor H. Moll
    Bruce E. Sagan
    Annals of Combinatorics, 2014, 18 : 541 - 562
  • [10] Polynomials with Generalized Fibonacci Number Coefficients
    Sitthaset, Airada
    Laohakosol, Vichian
    Mavecha, Sukrawan
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905