A posteriori estimates for approximations of time-dependent Stokes equations

被引:0
|
作者
Karakatsani, Fotini [1 ]
Makridakis, Charalambos
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
[2] Univ Crete, Dept Math Appl, Iraklion 71409, Crete, Greece
[3] FORTH, Inst Appl & Comp Math, Iraklion 71110, Crete, Greece
关键词
A posteriori error estimators; finite elements; finite volumes; time-dependent Stokes problem; discrete divergence-free spaces;
D O I
10.1093/imanum/drl036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a posteriori error estimates for space-discrete approximations of the time-dependent Stokes equations. By using an appropriate Stokes reconstruction operator, we are able to write an auxiliary error equation, in pointwise form, that satisfies the exact divergence-free condition. Thus, standard energy estimates from partial differential equation theory can be applied directly, and yield a posteriori estimates that rely on available corresponding estimates for the stationary Stokes equation. Estimates of optimal order in L-infinity(L-2) and L-infinity(H-1) for the velocity are derived for finite-element and finite-volume approximations.
引用
收藏
页码:741 / 764
页数:24
相关论文
共 50 条