Existence and approximation of solutions for Fredholm equations of the first kind with applications to a linear moment problem

被引:3
|
作者
Butnariu, Dan [1 ]
Shklyar, Ben Zion [2 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
[2] Holon Inst Technol, Holon, Israel
来源
OPTIMIZATION METHODS & SOFTWARE | 2008年 / 23卷 / 01期
关键词
almost common point; asymptotic centre of a sequence; Cimmino type algorithm; discrete linear moment problem; eigenvalue of a linear operator; Fredholm equation of the first kind; gram matrix; projection method; spectrum of a linear operator;
D O I
10.1080/10556780701374013
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Cimmino algorithm is an interative projection method for finding almost common points of measurable families of closed convex sets in a Hilbert space. When applied to Fredholm equations of the first kind, the Cimmino algorithm produces weak approximations of solutions provided that solutions exist. We show that for consistent Fredholm equations of the first kind whose data satisfy some spectral conditions, the sequences produced by the Cimmino algorithm converge not only weakly but also in norm. Using this fact, we obtain an existence criterion for solutions to a class of moment problems and show that if problems in this class have solutions, then the Cimmino algorithm generate norm approximations of such solutions.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Existence and approximation of solutions for fredholm equations of the first kind
    Butnariu, Dan
    Shklyar, Benzion
    [J]. WMSCI 2007: 11TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS, 2007, : 181 - +
  • [2] About Uniqueness of Solutions of Fredholm Linear Integral Equations of the First Kind in the Axis
    Asanov, Avyt
    Orozmamalova, Jypar
    [J]. FILOMAT, 2019, 33 (05) : 1329 - 1333
  • [3] Wavelet moment method for solving Fredholm integral equations of the first kind
    Babolian, E.
    Lotfi, T.
    Paripour, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) : 1467 - 1471
  • [4] Fredholm equations of the first kind
    Baginskaya S.N.
    Davydov É.G.
    [J]. Computational Mathematics and Modeling, 1997, 8 (3) : 226 - 230
  • [5] Solutions to systems of linear Fredholm integral equations of the third kind
    M. I. Imanaliev
    A. Asanov
    [J]. Doklady Mathematics, 2010, 81 : 115 - 118
  • [6] Solutions to systems of linear Fredholm integral equations of the third kind
    Imanaliev, M. I.
    Asanov, A.
    [J]. DOKLADY MATHEMATICS, 2010, 81 (01) : 115 - 118
  • [7] Approximation methods for system of linear Fredholm integral equations of second kind
    Chakraborty, Samiran
    Kant, Kapil
    Nelakanti, Gnaneshwar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 403
  • [8] On the existence and the approximation of solutions of Volterra integral equations of the second kind
    Ezquerro, J.A.
    Hernández-Verón, M.A.
    Magreñán, Á.A.
    Moysi, A.
    [J]. Applied Mathematics and Computation, 2024, 478
  • [9] Regularization and stability of systems of linear Fredholm integral equations of the first kind
    Asanov, A.
    Kadenova, Z. A.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2005, (38): : 11 - 14
  • [10] A class linear integral equations of Fredholm-Stilties of the first kind
    Asanov, A.
    Kalimbetov, B.
    Toiygonbaeva, A.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 68 (04): : 3 - 7