AN EVOLVING MOG FOR ONLINE IMAGE SEQUENCE SEGMENTATION

被引:2
|
作者
Charron, Cyril [1 ]
Hicks, Yulia [1 ]
机构
[1] Cardiff Univ, Cardiff, S Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/ICIP.2010.5653846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When segmenting image sequences, it is important to ensure the coherency of the produced segments across successive frames. In this paper, we present a method for evolving a Mixture of Gaussian (MoG) to produce such coherent segments. Using a MoG allows us to select the number of components automatically and in a principled way. The parameters of the evolving MoG can vary smoothly to track online the continuous evolution of the feature's distribution. In addition, the complexity of the MoG can vary to cope with incoming or disappearing objects in the sequence. The method is tested on several video sequences and the results are compared to another method, which shows the advantage of the ability to change the number of components automatically for tracking changes in the scene.
引用
收藏
页码:2189 / 2192
页数:4
相关论文
共 50 条
  • [1] A unified model of GMRF and MOG for image segmentation
    Yu, P
    Tong, XW
    Feng, JF
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 3513 - 3516
  • [2] Evolving Fuzzy Image Segmentation
    Othman, Ahmed A.
    Tizhoosh, Hamid R.
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1603 - 1609
  • [3] EFIS-Evolving Fuzzy Image Segmentation
    Othman, Ahmed A.
    Tizhoosh, Hamid R.
    Khalvati, Farzad
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (01) : 72 - 82
  • [4] Online Evaluation System of Image Segmentation
    Khai Nguyen
    Peng, Bo
    Li, Tianrui
    Chen, Qin
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 527 - +
  • [5] Proportion Priors for Image Sequence Segmentation
    Nieuwenhuis, Claudia
    Strekalovskiy, Evgeny
    Cremers, Daniel
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2328 - 2335
  • [6] Evolving a Fuzzy Rule-Base for Image Segmentation
    Borji, A.
    Hamidi, M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 4 - +
  • [7] ESTIMATING ADAPTIVE COEFFICIENTS OF EVOLVING GMMS FOR ONLINE VIDEO SEGMENTATION
    Kaloskampis, Ioannis
    Hicks, Yulia A.
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 513 - 516
  • [8] Progressive Image Segmentation Using Online Learning
    Hu, Jiagao
    Sun, Zhengxing
    Yang, Kewei
    Chen, Yiwen
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 181 - 191
  • [9] On the Road to Online Adaptation for Semantic Image Segmentation
    Volpi, Riccardo
    De Jorge, Pau
    Larlus, Diane
    Csurka, Gabriela
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19162 - 19173
  • [10] Simultaneous parameter estimation and image segmentation for image sequence coding
    Matthews, KE
    Namazi, NM
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 1062 - 1069