A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics

被引:21
|
作者
Zhou, Geyu [1 ]
Zhao, Hongyu [1 ,2 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06510 USA
来源
PLOS GENETICS | 2021年 / 17卷 / 07期
关键词
SUSCEPTIBILITY LOCI; POLYGENIC SCORES; RISK PREDICTION; ASSOCIATION; REGRESSION;
D O I
10.1371/journal.pgen.1009697
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic prediction of complex traits has great promise for disease prevention, monitoring, and treatment. The development of accurate risk prediction models is hindered by the wide diversity of genetic architecture across different traits, limited access to individual level data for training and parameter tuning, and the demand for computational resources. To overcome the limitations of the most existing methods that make explicit assumptions on the underlying genetic architecture and need a separate validation data set for parameter tuning, we develop a summary statistics-based nonparametric method that does not rely on validation datasets to tune parameters. In our implementation, we refine the commonly used likelihood assumption to deal with the discrepancy between summary statistics and external reference panel. We also leverage the block structure of the reference linkage disequilibrium matrix for implementation of a parallel algorithm. Through simulations and applications to twelve traits, we show that our method is adaptive to different genetic architectures, statistically robust, and computationally efficient. Our method is available at https://github.com/eldronzhou/SDPR.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Dissecting the genetics of complex traits using summary association statistics
    Bogdan Pasaniuc
    Alkes L. Price
    [J]. Nature Reviews Genetics, 2017, 18 : 117 - 127
  • [2] Dissecting the genetics of complex traits using summary association statistics
    Pasaniuc, Bogdan
    Price, Alkes L.
    [J]. NATURE REVIEWS GENETICS, 2017, 18 (02) : 117 - 127
  • [3] Improved prediction of complex traits from individual-level data and summary statistics
    Speed, Doug
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 28 - 28
  • [4] Bayesian hypothesis tests using nonparametric statistics
    Yuan, Ying
    Johnson, Valen E.
    [J]. STATISTICA SINICA, 2008, 18 (03) : 1185 - 1200
  • [5] Improved genetic prediction of complex traits from individual-level data or summary statistics
    Zhang, Qianqian
    Prive, Florian
    Vilhjalmsson, Bjarni
    Speed, Doug
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] A Bayesian nonparametric method for prediction in EST analysis
    Lijoi, Antonio
    Mena, Ramses H.
    Prunster, Igor
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [7] Improved genetic prediction of complex traits from individual-level data or summary statistics
    Qianqian Zhang
    Florian Privé
    Bjarni Vilhjálmsson
    Doug Speed
    [J]. Nature Communications, 12
  • [8] A Bayesian nonparametric method for prediction in EST analysis
    Antonio Lijoi
    Ramsés H Mena
    Igor Prünster
    [J]. BMC Bioinformatics, 8
  • [9] Improved polygenic prediction by Bayesian multiple regression on summary statistics
    Lloyd-Jones, Luke R.
    Zeng, Jian
    Sidorenko, Julia
    Yengo, Loic
    Moser, Gerhard
    Kemper, Kathryn E.
    Wang, Huanwei
    Zheng, Zhili
    Magi, Reedik
    Esko, Tonu
    Metspalu, Andres
    Wray, Naomi R.
    Goddard, Michael E.
    Yang, Jian
    Visscher, Peter M.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Improved polygenic prediction by Bayesian multiple regression on summary statistics
    Luke R. Lloyd-Jones
    Jian Zeng
    Julia Sidorenko
    Loïc Yengo
    Gerhard Moser
    Kathryn E. Kemper
    Huanwei Wang
    Zhili Zheng
    Reedik Magi
    Tõnu Esko
    Andres Metspalu
    Naomi R. Wray
    Michael E. Goddard
    Jian Yang
    Peter M. Visscher
    [J]. Nature Communications, 10