A Saint-Venant principle for shear band localization

被引:2
|
作者
Horgan, CO [1 ]
Olmstead, WE
机构
[1] Univ Virginia, Dept Civil Engn, Charlottesville, VA 22904 USA
[2] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
来源
关键词
shear band localization; spatial decay of temperature; second-order nonlinear parabolic partial differential equations;
D O I
10.1007/s00033-003-3202-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A type of Saint-Venant principle is derived for a two-dimensional model of shear band formation in thermoviscoplastic solids. To establish that the thermal energy generated during the formation process remains highly localized, a spatially decaying upper bound on the temperature is derived. It is found that the temperature bound decays exponentially along the direction perpendicular to the band, with a rate that decreases in time. The result is established by using maximum principles for second-order nonlinear parabolic partial differential equations.
引用
收藏
页码:807 / 814
页数:8
相关论文
共 50 条
  • [1] A Saint-Venant principle for shear band localization
    C. O. Horgan
    W. E. Olmstead
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 807 - 814
  • [2] ON THE SAINT-VENANT PRINCIPLE IN ELASTICITY
    LADEVEZE, P
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, 2 (02): : 161 - 184
  • [3] SAINT-VENANT AND A MATTER OF PRINCIPLE
    TOUPIN, RA
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1965, 28 (02): : 221 - &
  • [4] ON SAINT-VENANT PRINCIPLE IN MICROPOLAR ELASTICITY
    CHIRITA, S
    ARON, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1994, 32 (12) : 1893 - 1901
  • [5] Saint-Venant principle for various geometries
    Fischer, Kurt
    Computational Methods, Pts 1 and 2, 2006, : 499 - 503
  • [6] On a generalized relaxed Saint-Venant principle
    Marin, Marin
    Agarwal, Ravi P.
    Baleanu, Dumitru
    BOUNDARY VALUE PROBLEMS, 2018,
  • [7] The Saint-Venant problem and principle in elasticity
    Xu, XS
    Zhong, WX
    Zhang, HW
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (22) : 2815 - 2827
  • [8] SAINT-VENANT PRINCIPLE FOR A HELICAL SPRING
    BATRA, RC
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1978, 45 (02): : 297 - 301
  • [9] On torsion and shear of Saint-Venant beams
    Romano, Giovanni
    Barretta, Annalisa
    Barretta, Raffaele
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 35 : 47 - 60
  • [10] Saint-Venant's principle for a piezoelectric body
    Borrelli, A
    Patria, MC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (03) : 1098 - 1111