A Path Planning Algorithm for Space Manipulator Based on Q-Learning

被引:0
|
作者
Li, Taiguo [1 ]
Li, Quanhong [2 ]
Li, Wenxi [1 ]
Xia, Jiagao [1 ]
Tang, Wenhua [1 ]
Wang, Weiwen [1 ]
机构
[1] Lanzhou Inst Phys, Lanzhou, Gansu, Peoples R China
[2] Gansu Agr Univ, Coll Resources & Environm, Lanzhou, Gansu, Peoples R China
关键词
Space Manipulato; Grid Model; Q-Learning; Reinforcement Learning; Path Planning;
D O I
10.1109/itaic.2019.8785427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
an improved Q-Learning autonomous learning algorithm is proposed to solve the problem of the adaptive path planning of the space manipulator in the unknown environment. After simplification of the manipulator and obstacle model, the grid model of the environment is established, and the position of the manipulator and obstacles are randomly deployed in the grid map. Based on the analysis of the basic principle of reinforcement learning and the state generalization method, the improved Q-Learning algorithm is used to carry out the path planning. In this algorithm, the reward and punishment strategies in the path planning of the manipulator are designed, and the approximate greedy and continuous micro Botlzmann distribution behavior selection strategy is adopted. According to the autonomous learning of Q-table, the manipulator can guide its follow-up action selection and path planning, reduce the number of manipulator movement, and reduce the blindness of the learning process. The results show that the algorithm has the advantages of simple calculation, strong self-learning ability, and can successfully complete the adaptive path planning in unknown environment.
引用
收藏
页码:1566 / 1571
页数:6
相关论文
共 50 条
  • [1] A Path Planning Algorithm for UAV Based on Improved Q-Learning
    Yan, Chao
    Xiang, Xiaojia
    [J]. 2018 2ND INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS), 2018, : 46 - 50
  • [2] Mobile robot path planning based on Q-learning algorithm
    Li, Shaochuan
    Wang, Xuiqing
    Hu, Liwei
    Liu, Ying
    [J]. 2019 WORLD ROBOT CONFERENCE SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION (WRC SARA 2019), 2019, : 160 - 165
  • [3] Coverage Path Planning Optimization Based on Q-Learning Algorithm
    Piardi, Luis
    Lima, Jose
    Pereira, Ana, I
    Costa, Paulo
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [4] Hybrid Path Planning Algorithm of the Mobile Agent Based on Q-Learning
    Gao, Tengteng
    Li, Caihong
    Liu, Guoming
    Guo, Na
    Wang, Di
    Li, Yongdi
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (02) : 130 - 142
  • [5] Indoor Emergency Path Planning Based on the Q-Learning Optimization Algorithm
    Xu, Shenghua
    Gu, Yang
    Li, Xiaoyan
    Chen, Cai
    Hu, Yingyi
    Sang, Yu
    Jiang, Wenxing
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (01)
  • [6] PATH PLANNING OF MOBILE ROBOT BASED ON THE IMPROVED Q-LEARNING ALGORITHM
    Chen, Chaorui
    Wang, Dongshu
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (03): : 687 - 702
  • [7] Hybrid Path Planning Algorithm of the Mobile Agent Based on Q-Learning
    Caihong Tengteng Gao
    Guoming Li
    Na Liu
    Di Guo
    Yongdi Wang
    [J]. Automatic Control and Computer Sciences, 2022, 56 : 130 - 142
  • [8] Hybrid Path Planning of A Quadrotor UAV Based on Q-Learning Algorithm
    Zhang, Tianze
    Huo, Xin
    Chen, Songlin
    Yang, Baoqing
    Zhang, Guojiang
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5415 - 5419
  • [9] A novel Q-learning algorithm based on improved whale optimization algorithm for path planning
    Li, Ying
    Wang, Hanyu
    Fan, Jiahao
    Geng, Yanyu
    [J]. PLOS ONE, 2022, 17 (12):
  • [10] Path planning for unmanned surface vehicle based on improved Q-Learning algorithm
    Wang, Yuanhui
    Lu, Changzhou
    Wu, Peng
    Zhang, Xiaoyue
    [J]. OCEAN ENGINEERING, 2024, 292