Disjointness in hypercyclicity

被引:102
|
作者
Bes, Juan [1 ]
Peris, Alfredo
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46022 Valencia, Spain
[3] Univ Politecn Valencia, IMPA, ETS Arquitectura, E-46022 Valencia, Spain
关键词
hypercyclic vectors; hypercyclic operators;
D O I
10.1016/j.jmaa.2007.02.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of disjointness for finitely many hypercyclic operators acting on a common space, notion that is weaker than Furstenberg's disjointness of fluid flows. We provide a criterion to construct disjoint hypercyclic operators, that generalizes some well-known connections between the Hypercyclicity Criterion, hereditary hypercyclicity and topological mixing to the setting of disjointness in hypercyclicity. We provide examples of disjoint hypercyclic operators for powers of weighted shifts on a Hilbert space and for differentiation operators on the space of entire functions on the complex plane. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 315
页数:19
相关论文
共 50 条
  • [1] Hypercyclicity in omega
    Petersson, Henrik
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) : 1145 - 1149
  • [2] Product recurrent properties, disjointness and weak disjointness
    Pandeng Dong
    Song Shao
    Xiangdong Ye
    Israel Journal of Mathematics, 2012, 188 : 463 - 507
  • [3] PRODUCT RECURRENT PROPERTIES, DISJOINTNESS AND WEAK DISJOINTNESS
    Dong, Pandeng
    Shao, Song
    Ye, Xiangdong
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 463 - 507
  • [4] Subspace hypercyclicity
    Madore, Blair F.
    Martinez-Avendano, Ruben A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 502 - 511
  • [5] A bridge between u-frequent hypercyclicity and frequent hypercyclicity
    Menet, Quentin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
  • [6] On Hypercyclicity of Linear Relations
    Evgeny Abakumov
    Mahdi Boudabbous
    Maher Mnif
    Results in Mathematics, 2018, 73
  • [7] Eigenvalues and hypercyclicity in omega
    Héctor N. Salas
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2011, 105 : 379 - 388
  • [8] On hypercyclicity and supercyclicity criteria
    Bermúdez, T
    Bonilla, A
    Peris, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) : 45 - 54
  • [9] MULTIPLE RECURRENCE AND HYPERCYCLICITY
    Cardeccia, Rodrigo
    Muro, Santiago
    MATHEMATICA SCANDINAVICA, 2022, 128 (03) : 589 - 610
  • [10] MINIMAL DISJOINTNESS
    AOUN, J
    LI, YHA
    LINGUISTICS, 1990, 28 (02) : 189 - 203