The Hamiltonian properties in K1,r-free split graphs

被引:2
|
作者
Dai, Guowei [1 ]
Zhang, Zan-Bo [2 ]
Broersma, Hajo [3 ]
Zhang, Xiaoyan [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci & Inst Math, Nanjing 210023, Peoples R China
[2] Guangdong Univ Finance & Econ, Inst Artificial Intelligence & Deep Learning, Sch Stat & Math, Guangzhou 510320, Peoples R China
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, POB 217, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
Hamiltonian; K1; 3-free; 4-free; Pancyclic; Split graph;
D O I
10.1016/j.disc.2022.112826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph F of order at least three, we say that a graph G is F-free if G does not contain an induced subgraph isomorphic to F. We call a connected graph G a split graph if the vertex set of G can be partitioned into a clique and an independent set. Motivated by a hamiltonicity result due to Renjith and Sadagopan (arXiv:1610 .00855v3), involving K-1,K-3-free split graphs, we study the hamiltonian properties of K-1,K-r-free split graphs. In our first main result, we show that a K-1,K-3-free split graph G is pancyclic if and only if G is 2-connected, which improves a result of Renjith and Sadagopan. Also, we prove that a K-1,K-4-free split graph G is hamiltonian if G is 3-connected. Further, we give a conjecture as following: Let G be a K-1,K-r+1-free split graph with at least three vertices. If G is r-connected, then G is hamiltonian. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On hamiltonian properties of K1,r-free split graphs
    Liu, Xia
    Song, Sulin
    Zhan, Mingquan
    Lai, Hong-Jian
    [J]. DISCRETE MATHEMATICS, 2023, 346 (07)
  • [2] Hamiltonian Cycle in K1,r-Free Split Graphs - A Dichotomy
    Renjith, P.
    Sadagopan, N.
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (01) : 1 - 32
  • [3] Spanning connectivity of K1,r-free split graphs
    Xiong, Wei
    Chen, Xing
    Wu, Yang
    You, Zhifu
    Lai, Hong-Jian
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 358 : 176 - 183
  • [4] A note on Hamiltonian cycles in K1,r-free graphs
    Li, R
    [J]. ARS COMBINATORIA, 1999, 51 : 199 - 203
  • [5] The Steiner tree in K1,r-free split graphs-A Dichotomy
    Renjitha, P.
    Sadagopan, N.
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 280 : 246 - 255
  • [6] Weights of induced subgraphs in K1,r-free graphs
    Pruchnewski, Anja
    Voigt, Margit
    [J]. DISCRETE MATHEMATICS, 2012, 312 (16) : 2429 - 2432
  • [7] Vertex-disjoint copies of K1,t in K1,r-free graphs
    Jiang, Suyun
    Chiba, Shuya
    Fujita, Shinya
    Yan, Jin
    [J]. DISCRETE MATHEMATICS, 2017, 340 (04) : 649 - 654
  • [8] Vertex -disjoint copies of K1,3 in K1,r-free graphs
    Jiang, Suyun
    Yan, Jin
    [J]. DISCRETE MATHEMATICS, 2016, 339 (12) : 3085 - 3088
  • [9] Vertex-disjoint stars in K1,r-free graphs
    Jiang, Suyun
    Li, Hao
    Yan, Jin
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 302 : 189 - 197
  • [10] Paired versus double domination in K1,r-free graphs
    Paul Dorbec
    Bert Hartnell
    Michael A. Henning
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 688 - 694