On interactive fuzzy boundary value problems

被引:16
|
作者
Sanchez, Daniel Eduardo [1 ,2 ]
de Barros, Laecio Carvalho [1 ]
Esmi, Estevao [1 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, IMECC, Campinas, SP, Brazil
[2] Univ Austral Chile, Patagonia Campus, Coyhaique, Chile
基金
巴西圣保罗研究基金会;
关键词
Fuzzy boundary value problems; Interactive fuzzy numbers; Extension principle;
D O I
10.1016/j.fss.2018.07.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we use the concept of interactivity between fuzzy numbers for the solution to a linear fuzzy boundary value problem (FBVP). We show that a solution of a FBVP, with non-interactive fuzzy numbers as boundary values, can be obtained by the Zadeh's Extension Principle. In addition, we show it is possible to obtain a fuzzy solution by means of the extension principle based on joint possibility distributions for the case where the boundary values are given by interactive fuzzy numbers. Examples of FBVPs with both cases, interactive and non-interactive, are presented. Also from arithmetic operations for linearly correlated fuzzy numbers, we compare our solutions to the one proposed by Gasilov et al. We conclude that the fuzzy solution in the interactive case (when the boundary values are linearly correlated fuzzy numbers) is contained in the fuzzy solution for the non-interactive case. Finally, we present the fuzzy solution for a nonlinear FBVP with Gaussian fuzzy numbers as boundary values. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 50 条
  • [1] On fuzzy boundary value problems
    Chen, Minghao
    Wu, Congxin
    Xue, Xiaoping
    Liu, Guoqing
    INFORMATION SCIENCES, 2008, 178 (07) : 1877 - 1892
  • [2] On Boundary Value Problems for Fuzzy Differential Equations
    Rodriguez-Lopez, Rosana
    SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 218 - 225
  • [3] On Boundary Value Problems in Normed Fuzzy Spaces
    Farajzadeh, Ali
    Hosseinpour, Azadeh
    Kumam, Wiyada
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 305 - 313
  • [4] FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS
    Arara, A.
    Benchohra, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (01): : 119 - 126
  • [5] Hilbert solution of fuzzy fractional boundary value problems
    Hasan, S.
    Harrouche, N.
    Al-Omari, S. K. Q.
    Al-Smadi, M.
    Momani, S.
    Cattani, C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [6] A Novel Numerical Method for Fuzzy Boundary Value Problems
    Can, E.
    Bayrak, M. A.
    Hicdurmaz, B.
    INTERNATIONAL PHYSICS CONFERENCE AT THE ANATOLIAN PEAK (IPCAP2016), 2016, 707
  • [7] Initial and boundary value problems for fuzzy differential equations
    O'Regan, D
    Lakshmikantham, V
    Nieto, JJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) : 405 - 415
  • [8] Hilbert solution of fuzzy fractional boundary value problems
    S. Hasan
    N. Harrouche
    S. K. Q. Al-Omari
    M. Al-Smadi
    S. Momani
    C. Cattani
    Computational and Applied Mathematics, 2022, 41
  • [9] Controlling the Width of the Sum of Interactive Fuzzy Numbers with Applications to Fuzzy Initial Value Problems
    Sussner, Peter
    Esmi, Estevao
    Barros, Laecio C.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1453 - 1460
  • [10] Fuzzy reproducing kernel space method for solving fuzzy boundary value problems
    N. Gholami
    T. Allahviranloo
    S. Abbasbandy
    N. Karamikabir
    Mathematical Sciences, 2019, 13 : 97 - 103