Alternative computation of the Seidel aberration coefficients using the Lie algebraic method

被引:1
|
作者
Barion, A. [1 ]
Anthonissen, M. J. H. [1 ]
Boonkkamp, J. H. M. ten Thije [1 ]
L. Ijzerman, W. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Signify, High Tech Campus 7, NL-5656 AE Eindhoven, Netherlands
关键词
Matrix (First Order) (First Order); (Third Order);
D O I
10.1364/JOSAA.465900
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We give a brief introduction to Hamiltonian optics and Lie algebraic methods. We use these methods to describe the operators governing light propagation, refraction, and reflection in phase space. The method offers a systematic way to find aberration coefficients of any order for arbitrary rotationally symmetric optical systems. The coefficients from the Lie method are linked to the Seidel aberration coefficients. Furthermore, the property of summing individual surface contributions is preserved by the Lie algebraic theory. Two examples are given to validate the proposed methodology with good results. (c) 2022 Optica Publishing Group
引用
收藏
页码:1603 / 1615
页数:13
相关论文
共 50 条
  • [1] Alternative computation of the Seidel aberration coefficients using the Lie algebraic method
    Barion, A.
    Anthonissen, M.J.H.
    ten Thije Boonkkamp, J.H.M.
    IJzerman, W.L.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39 (09): : 1603 - 1615
  • [2] Seidel aberration coefficients: an alternative computational method
    Lin, Psang Dain
    Johnson, R. Barry
    OPTICS EXPRESS, 2019, 27 (14): : 19712 - 19725
  • [3] Lie algebraic computation
    Cohen, AM
    deGraaf, WA
    COMPUTER PHYSICS COMMUNICATIONS, 1996, 97 (1-2) : 53 - 62
  • [4] Spherical aberration and its correction using Lie algebraic methods
    Govindan Rangarajan
    Minita Sachidanand
    Pramana, 1997, 49 : 635 - 643
  • [5] Spherical aberration and its correction using Lie algebraic methods
    Rangarajan, G
    Sachidanand, M
    PRAMANA-JOURNAL OF PHYSICS, 1997, 49 (06): : 635 - 643
  • [6] Computing aberration coefficients for plane-symmetric reflective systems: a Lie algebraic approach
    Barion, A.
    Anthonissen, M. J. H.
    Boonkkamp, J. H. M. ten Thije
    Ijzerman, W. L.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (06) : 1215 - 1224
  • [7] Analysis and interpretation of the Seidel aberration coefficients in digital holography
    Claus, Daniel
    Watson, John
    Rodenburg, John
    APPLIED OPTICS, 2011, 50 (34) : H220 - H229
  • [8] CONVERSION OF ZERNIKE ABERRATION COEFFICIENTS TO SEIDEL AND HIGHER-ORDER POWER-SERIES ABERRATION COEFFICIENTS
    TYSON, RK
    OPTICS LETTERS, 1982, 7 (06) : 262 - 264
  • [9] Seidel aberration coefficients for radial gradient-index lenses
    Bociort, F.
    Kross, J.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11 (10): : 2647 - 2656
  • [10] SEIDEL ABERRATION COEFFICIENTS FOR RADIAL GRADIENT-INDEX LENSES
    BOCIORT, F
    KROSS, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10): : 2647 - 2656